страница 1 |
|||||||
Похожие работы
|
Алгоритмы и способы повышения точности работы системы ориентации и навигации внутритрубных - страница №1/1
![]() На правах рукописи КОПИЧЕВА Алла Алексеевна АЛГОРИТМЫ И СПОСОБЫ ПОВЫШЕНИЯ ТОЧНОСТИ РАБОТЫ СИСТЕМЫ ОРИЕНТАЦИИ И НАВИГАЦИИ ВНУТРИТРУБНЫХ СРЕДСТВ ДЕФЕКТОСКОПИИ Специальность 05.11.03 – Приборы навигации Автореферат диссертации на соискание ученой степени кандидата технических наук Саратов 2013 Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Саратовский государственный технический университет имени Гагарина Ю.А.» Научный руководитель – заслуженный деятель науки и техники РФ, доктор технических наук, профессор
доктор технических наук, профессор, ФГБУН «Институт проблем точной механики и управления Российской академии наук», заместитель директора по научной работе Пылаев Юрий Константинович кандидат технических наук, ООО НПП «Антарес» (г. Саратов), главный конструктор Ведущая организация – ФГУП «Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина» – «ПО «КОРПУС» (г. Саратов) Защита состоится «26» декабря 2013 г. в 15 часов на заседании диссертационного совета Д 212.242.04 при ФГБОУ ВПО «Саратовский государственный технический университет имени Гагарина Ю.А.» по адресу: 410054, Саратов, ул. Политехническая, 77, ауд. 414/1 корп.
Автореферат разослан «25» ноября 2013 года ![]() Ученый секретарь диссертационного совета Алешкин Валерий Викторович
Существует несколько различных методов определения технического состояния трубопровода (ТП). При этом общепризнано, что метод внутритрубной дефектоскопии позволяет с наибольшей эффективностью обнаруживать коррозионные поражения, механические повреждения и отклонения от строительных норм. Данный метод относится к группе методов так называемого «неразрушающего контроля» и, что немаловажно, осуществляется без остановки процесса транспортировки газо- или нефтепродукта по исследуемому участку трубопровода. Инструментом такого контроля являются внутритрубные средства дефектоскопии (ВСД) различных классов:
Для снижения затрат на ремонт магистральных ТП требуется знание положения его элементов и дефектов на местности с погрешностью, соизмеримой с шириной ковша землеройных машин (1 м). Точные пространственные координаты трубопроводов необходимы и для решения вопросов землепользования: составления кадастров, подготовки проектной документации на строительство вблизи охранной зоны и др. Привязка дефектов трасс магистральных ТП (особенно многониточных) к карте местности позволяет выявлять пространственно обусловленные факторы их развития, более эффективно прогнозировать техническое состояние магистрального ТП и планировать ремонтно-восстановительные работы. Уровень безопасности и надежности трубопровода определяется не только дефектами труб и сварных соединений, но и уровнем напряженно-деформированного состояния элементов трубопровода. Известно, что максимальное количество отказов и аварий на подземных трубопроводах происходят в начальный период их эксплуатации – другими словами, в период, когда уложенные в землю трубы испытывают наибольшие перемещения, связанные с осадкой грунтов и восстановлением нарушенных при строительстве водотоков. Контроль таких перемещений, их мониторинг позволяют выявлять наиболее опасные места и своевременно принимать необходимые меры. Особенно актуальна эта проблема для новых трубопроводов, проложенных в гористой местности или местности с нестабильным тектоническим состоянием, а также на участках с большой неоднородностью плотности грунта при сезонных колебаниях температуры. Для определения таких мест требуется знание положения газопровода на местности с точностью до десятков сантиметров. Не менее важным параметром пространственного положения трубопровода является его расположение под землей, в первую очередь глубина его залегания. Этот параметр строго регламентируется на этапе строительства трубопроводов Строительными нормами и правилами для магистральных трубопроводов СНиП 2.05.06-85*. Согласно данным СНиП, заглубление трубопроводов до верха трубы надлежит принимать не менее 0.6 м, однако глубина залегания отдельных участков трубопровода определяется характеристиками местности. За время эксплуатации трубопровода глубина его залегания может меняться. Это связано с естественными природными процессами, такими как размытие дна рек, пучение грунта, естественное осушение болот, оползневые процессы и т.п. В связи с этим появляется необходимость мониторинга глубины залегания трубопровода с течением времени. Для решения задачи позиционирования трубопровода перспективным направлением является использование на борту внутритрубного средства дефектоскопии (ВСД) интегрированных систем ориентации и навигации. Такие системы обычно представляют собой совокупность бесплатформенной инерциальной системы ориентации (БИСО) и системы навигации в виде одометров, спутниковых навигационных систем (СНС) и геодезических средств для определения координат характерных точек трубопровода. Точность решения задачи позиционирования трубопровода определяется погрешностями СНС, одометрической системы ( Работой в области подземной навигации успешно занимаются такие организации как ROSEN, Tuboscope Pipeline Services Inc (США), ЗАО «Газприборавтоматикасервис» (Саратов, Россия), ЗАО НПО «Спецнефтегаз» (Екатеринбург, Россия). Проблемам повышения точности работы подземных средств ориентации и навигации посвящены труды как российских авторов: А.Н. Бакурский, П.К. Плотников, А.И. Синев, В.Б. Никишин, Я.И. Биндер, Н.А. Парусников, А.В. Андропов, А.А. Панев, так и зарубежных: Eun-Hwan Shin (Канада, Корея), Naser El-Sheimy (Канада). Автор выражает большую признательность генеральному директору ЗАО «Газприборавтоматикасервис» Синеву А.И. за разрешение использования в диссертационной работе натурных данных пропусков ВСД на участках реальных трубопроводов, а также особую благодарность к.т.н. Никишину В.Б. за многочисленные консультации по работе над диссертацией. Цель и основные задачи диссертационной работы. Целью настоящей работы является разработка способов и алгоритмов повышения точности интегрированных бесплатформенных систем ориентации и навигации средств внутритрубной дефектоскопии. Для достижения указанной цели поставлены следующие задачи:
Методы исследования. Рассматриваемые в диссертационной работе задачи решаются с использованием методов и математического аппарата теории инерциальной навигации, теории дифференциальных уравнений, теории автоматического управления, теории устойчивости, методов системного анализа, методов математического моделирования и экспериментальных исследований. Научная новизна:
Достоверность результатов обеспечивается корректностью математической постановки задач, строгостью применяемых методов решения, подтверждением основных теоретических предпосылок результатами математического моделирования и эксперимента. На защиту выносятся:
Практическая ценность. На основе проведенного сопоставительного анализа алгоритмов ориентации в виде дифференциальных кинематических уравнений Эйлера с введенными членами коррекции с приведенными к объектовому и горизонтному базисам членами ориентации выработаны рекомендации по требуемой точности ДПИ для решения задачи ориентации ВСД, необходимые при проектировании БИСО повышенной точности для ВСД. Разработанные алгоритмы и способы идентификации и компенсации влияния углового смещения продольной оси ВСД относительно оси ТП позволяют снизить требования по жесткости к манжетам (что улучшает эксплуатационные параметры ВСД) и существенно уменьшить погрешности определения координат ТП без изменений конструкции ВСД и состава бортового оборудования (за счет использования избыточности информации). Исследования эффективности двух разновидностей алгоритмов ориентации были использованы при совершенствовании и оптимизации алгоритмов работы бесплатформенных систем ориентации для внутритрубных навигационных инспектирующих снарядов ЗАО «Газприборавтоматикасервис». Способы и алгоритмы идентификации и компенсации влияния углового смещения внедрены в технологию навигационного обследования трубопроводов всех диаметров средствами внутритрубной дефектоскопии ЗАО «Газприборавтоматикасервис». Апробация работы. Основные положения и результаты по работе докладывались на следующих конференциях:
а также на научных семинарах кафедры «Приборостроение» СГТУ (2005-2013 гг.). Публикации. Основные результаты диссертационной работы опубликованы в 12 печатных работах. Из них 2 статьи в изданиях, рекомендованных в действующем перечне ВАК РФ, 1 патент РФ, 7 докладов в сборниках международных и всероссийских конференций, 1 работа депонирована в ВИНИТИ. Также зарегистрирован 1 программный продукт. Структура и объем работы. Диссертация состоит из введения, пяти глав, заключения, списка использованной литературы. Общий объем диссертации составляет 147 страниц, включая 38 рисунков. СОДЕРЖАНИЕ РАБОТЫ Во введении обосновывается актуальность темы исследований, формулируются цель, конкретные задачи и направления исследований, научная новизна, практическая значимость исследований, основные результаты, выносимые на защиту, приводится обзор содержания диссертации. В первой главе приводится обзор трудов по теории и практике повышения точности решения задач ориентации ВСД и позиционирования ТП. Приводятся описания различных уравнений ориентации, применяемых при исследовании трубопроводов. Производится обзор существующих инерциальных датчиков, применяемых в составе БИСО для ВСД, а также обзор известных методов и способов повышения точности алгоритмов работы бесплатформенных инерциальных систем ориентации. Поставлены и обоснованы задачи диссертационного исследования. Во второй главе описан подвижный объект – внутритрубный снаряд-дефектоскоп (ВСД), на котором устанавливается БИСО, интегрированная со спутниковой навигационной системой (СНС), одометрами и магнетометрами. Приведен анализ условий работы БИСО в составе ВСД, построены ее физическая и математическая модели. При этом выводятся две разновидности алгоритмов функционирования БИСО с учетом влияния углового смещения ВСД относительно продольной оси трубопровода. Приводятся алгоритмы системы навигации по сигналам одометра и приборов и систем неинерциальной природы. Функциональная схема ВСД с установленной на его борту БИСО, одометрами, а также другими наземными приборами и системами приведена на рис. 1. ![]() ![]() Рис. 1. Функциональная схема ВСД с установленной на его борту БИСО Структура системы ориентации и навигации внутритрубного средства дефектоскопии включает две подсистемы: бортовую и наземную. Бортовая подсистема включена непосредственно в состав внутритрубного снаряда-дефектоскопа и содержит: БИСО в виде инерциального модуля (ИМ), включающего трехкомпонентный гироскопический измеритель абсолютной угловой скорости (ТГИУС) и трехкомпонентный измеритель кажущегося ускорения (ТИКУ), а также одометр и бортовой компьютер. К наземной части относятся неинерциальные геодезические приборы и системы (приемники спутниковой навигационной системы, трассоискатели в виде магнитометров и др.) навигации и привязки элементов и дефектов трубопровода к координатам местности. При анализе условий работы были использованы натурные данные БИСО в составе ВСД производства ЗАО «Газприборавтоматикасервис» и других приборов и систем по 40 участкам магистральных трубопроводов. Условия работы характеризуются следующими данными:
Построены физическая и математическая модели работы системы ориентации и навигации ВСД на основе комплексирования данных БИСО и одометров, установленных на его борту, с данными неинерциальных геодезических приборов и систем (приемников СНС и трассоискателей). К особенностям физической модели следует отнести следующее: 1. Использование режима постобработки информации:
2. Доступность одометрической информации позволяет при решении задачи навигации использовать методы счисления координат по приращениям сигналов одометра и результатам решения задачи ориентации. Это снижает требования по точности к инерциальным датчикам на порядок и более. 3 При построении математической модели выводятся две разновидности алгоритмов функционирования БИСО с учетом влияния углового смещения ВСД относительно продольной оси трубопровода. В
водится в рассмотрение связанная с ВСД система координат Ou1u2u3, развернутая относительно трубы (рис. 2). Алгоритмы функционирования центрального компьютера при решении задачи ориентации с приведением угловых скоростей к осям объектового трехгранника (1-я разновидность) с учетом углового смещения продольной оси ВСД относительно оси трубопровода: ![]() ![]() где ![]() где U – модуль вектора угловой скорости вращения Земли; ![]() Алгоритмы функционирования БИСО второй разновидности с приведением угловых скоростей и кажущихся ускорений к осям горизонтного трехгранника при наличии углового смещения продольной оси ВСД относительно оси трубопровода имеют вид ![]() ![]() ![]() ![]() ![]() где ![]() ![]() ![]() ![]() ![]() ![]() ![]() В третьей главе строятся и решаются уравнения ошибок для выведенных алгоритмов функционирования БИСОН, находятся аналитическим путем формулы для составляющих их ошибки от углового смещения. Выведенная математическая модель ошибок ![]() (9) ![]() ![]() ![]() ![]() (10) Подчеркнутые члены в (9) и (10) характеризуют влияние углового смещения продольной оси ВСД относительно оси трубопровода на ошибки функционирования БИСО. Условия асимптотической устойчивости решений уравнений ошибок (9) сводится к выполнению условий Для модели ошибок (10), если начальные значения этих ошибок Математическая модель ошибок Здесь подчеркиванием выделены составляющие погрешностей работы БИСО, вносимые угловым смещением продольной оси ВСД относительно оси трубопровода. Для определения характера влияния параметров углового смещения на ошибки БИСО элементы, характеризующие переходные процессы в решениях уравнений (11), не учитываются, рассматриваются ошибки в установившемся движении. На основе анализа решений уравнений ошибок были выведены формулы для ошибок оценок параметров ориентации от углового смещения для установившегося движения, справедливые для обеих разновидностей алгоритмов ориентации, в двух случаях:
![]() ![]()
![]() ![]() Влияние углового смещения на погрешности задачи позиционирования трубопровода при
где ![]() В работе предлагаются два способа идентификации и компенсации углового смещения продольной оси ВСД относительно оси трубопровода – для вращающегося и не вращающегося по крену ВСД, когда В первом способе предлагается определять параметры углового смещения продольной оси ВСД относительно строительной оси трубопровода по результатам предварительного решения задачи навигации на основе корреляции ошибок определения углов тангажа и рыскания, вызванных угловым смещением, с изменением угла крена. По результатам решения задачи навигации методом счисления пути определяется угол наклона вычисленной траектории к плоскости горизонта ![]() где С учетом углового смещения угол наклона траектории представляется в виде
где Используется оценка погрешности от углового смещения в виде формулы (12):
Для компенсации погрешности от углового смещения продольной оси ВСД относительно оси трубопровода необходимо определить его параметры Для определения параметров углового смещения предлагается аппроксимировать реализацию (15) с помощью функции (17), осуществляя фильтрацию остальных составляющих (16), например, методом наименьших квадратов. При повторном просчете трассы осуществляется компенсация углового смещения путем введения в алгоритмы ориентации корректирующих членов кажущихся ускорений и угловых скоростей: ![]() Основными условиями использования представленного способа являются:
В случае отсутствия вращательного движения ВСД ( ![]() В данном способе предлагается использовать сведения о рельефе местности. Данные сведения могут быть получены, например, методом геодезических измерений координат доступных участков осевой линии трубопровода. Специалистами измеряется высота грунта над трубопроводом с шагом 10-100 м (в зависимости от протяженности участка и сложности рельефа) и в этих точках трассоискателем измеряется глубина залегания трубопровода. Таким образом, получается высота осевой линии трубы в точках измерения: ![]() Основной вклад в погрешности таких измерений вносит погрешность определения глубины залегания трубопровода (равная погрешности работы трассоискателя ±0.5 м). Для уменьшения влияния этой погрешности и получения непрерывного массива исходных геоинформационных данных предлагается аппроксимировать массив (19) методом наименьших квадратов многочленом: ![]() где ![]() Аппроксимация производится на участках ограниченной длины (50…150 м), имеющих небольшое изменение рельефа местности, при условии, когда m≤n (n – количество точек геоинформационных измерений; m – количество точек, участвующих в построении аппроксимирующего многочлена). Для ограничения порядка аппроксимирующего многочлена при сохранении необходимой точности используется метод аппроксимации сплайн-функциями. После аппроксимации получается непрерывный массив высот, который на каждом шаге решения задачи позиционирования сравнивается с инерциальными данными. Затем формируется корректировка угла тангажа и, вычитая ее на следующей итерации из значения, полученного инерциальным путем, производится компенсация погрешности определения угла тангажа (в том числе и от углового смещения), тем самым увеличивается точность определения высотной координаты. Стоит отметить, что не всегда есть возможность измерить координаты на всем участке трубопровода, например, на подводных переходах, в гористой или болотистой местности. В таком случае корректировка производится на доступных участках и полученный корректирующий угол тангажа применяется при инерциальном просчете на недоступном участке.
Показано, что при условии использования в БИСО идеальных датчиков погрешности определения параметров ориентации без настройки на частоту Шулера для алгоритмов в горизонтной системе координат совпадают с погрешностями определения параметров ориентации в алгоритмах с приведением сигналов к объектовому базису. При настройке алгоритмов второго типа на частоту Шулера методические погрешности значительно уменьшаются (рис. 3). ![]() При использовании: 1 – алгоритмов 1-й разновидности; 2 – алгоритмов 2-й разновидности без настройки на частоту Шулера; 3 – для алгоритмов 2-й разновидности с настройкой на частоту Шулера ![]() ![]() Рис. 3. Ошибки оценивания угла азимута Результаты проведенных исследований показали, что алгоритмы 1-й разновидности требуют меньшее время выставки, но обладают погрешностями в канале азимута, связанными с эффектом детектирования кинематических параметров движения объекта. Алгоритмы 2-й разновидности исключают данные азимутальные погрешности, и позволяют реализовать настройку системы на период Шулера, что исключает баллистические погрешности и спровоцированные ими кардановые погрешности. Таким образом, алгоритмы 2-й разновидности обеспечивают более высокую точность выходных данных БИСО. ![]() ![]() Также проводилось моделирование случая использования в обеих разновидностях алгоритмов позиционной и интегральной коррекции. Доказаны аналитические предпосылки, что введение интегральной коррекции в алгоритмы 1-го типа приводит к ухудшению их результативности, что свидетельствует о невозможности настройки алгоритмов в объектовых осях на частоту Шулера. Для выявления параметров ДПИ, оказывающих наибольшее влияние на точность решения задачи ориентации, было проведено математическое моделирование работы БИСО с поочередным варьированием точностных параметров ДПИ (при нулевых прочих погрешностях). На рис. 4 в качестве примера приведены зависимости погрешностей определения угла крена от величины нулевого сигнала акселерометров (a) и дрейфа гироскопов (б). Анализ показал, что для БИСО, состоящей из ГИУС прецизионного класса точности (ωo<0.01°/час, δKm<10-5) и ИКУ прецизионного (Wo<10-5g, δKm<10-5) или среднего (Wo =10-510-3g, δKm=10-410-3) классов точности, наиболее целесообразно в качестве алгоритмов функционирования использовать кинематические уравнения Эйлера с настройкой на период Шулера и предварительным приведением сигналов ДПИ к горизонтному базису, т.к. в данном случае погрешности определения углов ориентации меньше, чем при использовании алгоритмов 1 типа (в 2 раза по каналу азимута, на 2 порядка по каналу тангажа и на 2…3 порядка по каналу крена). При использовании в качестве ДПИ акселерометров грубого класса точности, а гироскопов среднего и грубого класса точности настройка на период Шулера становится невозможной, вследствие чего уровень погрешностей определения параметров ориентации с использованием алгоритмов 1-го типа и алгоритмов 2-го типа становится соразмерным. Следовательно, при таком наборе ДПИ тип используемых алгоритмов не влияет на точность решения задачи ориентации. При сравнительном исследовании методических погрешностей двух разновидностей алгоритмов работы БИСО для режимов движения основания с большими углами тангажа (20°…60°) показано, что методические погрешности определения параметров ориентации при таком движении с использованием алгоритмов 2-й разновидности на 2..3 порядка меньше, чем при использовании алгоритмов первой разновидности, что соответствует значениям от 10-5 угл.град до 10-4 угл.град для алгоритмов 2-й разновидности против 10-2…10-1 угл.град для алгоритмов 1-й разновидности. Также результаты моделирования показали, что уровень погрешностей определения параметров ориентации с использованием алгоритмов 1-й разновидности на 2 порядка (по осям рыскания и крена) и на 3 порядка (по оси тангажа) ниже, чем при использовании алгоритмов 2-й разновидности. Также математическим моделированием было произведено исследование эффективности применения способа и алгоритмов компенсации погрешностей, связанных с угловым смещением продольной оси ВСД относительно оси ТП на основе их корреляции с креном. Показано, что при значительном изменении рельефа местности точность определения параметров углового смещения осей снижается, увеличение количества оборотов в 10 раз на исследуемом участке приводит к уменьшению погрешности определения параметров углового смещения по амплитуде и фазе в 3 раза. Это говорит о том, что при использовании данного метода в реальных условиях необходимо избегать в расчетах участков трасс, где наблюдается существенное изменение рельефа (> 3…5 м), а также необходимым условием является наличие вращения снаряда по крену с периодом не менее 100-300 м за оборот.
2 – для алгоритмов 2-й разновидности; – реперные точки; – контрольные точки ![]() ![]() ![]() ![]() Рис. 5. Профиль участка МГ Ямбург – Западная граница по результатам просчета с использованием двух типов алгоритмов Также было проведено исследование достижимой точности идентификации и компенсации погрешностей определения координат трубопровода из-за наличия углового смещения продольной оси ВСД относительно оси трубопровода при обследовании трубопроводов различных диаметров. В качестве примера приведено обследование участка трубопровода (рис. 6) внутритрубным дефектоскопом Крот СК700, оснащенным средством навигационно-топографическим СИТ-700, производства ЗАО «Газприборавтоматикасервис». Показано, что в контрольных точках погрешность определения высотной координаты снижается до 0.3…0.5 м при компенсации влияния углового смещения продольной оси ВСД относительно оси ТП. Причем для протяженных трасс, где есть возможность разбиения просчета на участки и определения параметров углового смещения для каждого участка, точность увеличивается в 1.5-2 раза по сравнению с определением средних параметров на всю трассу (рис. 6).
Рис. 6. Изменение высотной координаты и угла крена по дистанции, полученное в результате первичного просчета трассы и после идентификации и компенсации углового смещения продольной оси ВСД и оси трубопровода ![]() Рис. 7 Результат обследования подводного перехода через р. Паша с использованием сведений о рельефе местности В качестве примера внедрения способа компенсации погрешности определения высотной координаты с использованием сведений о рельефе местности приведено обследование подводного перехода через р. Паша. Геодезические координаты и глубина залегания трубопровода были измерены специалистами с дискретностью порядка 5-10 м на правом и левом берегах реки, что позволило оценить и компенсировать погрешность определения угла тангажа и, как следствие, повысить точность определения высотной координаты с 1...1.5 м до 15…40 см (рис. 7). Экспериментально показано, что при существующем наборе инерциальных датчиков первичной информации в составе ВСД использование алгоритмов ориентации 1-й и 2-й разновидностей показывают равнозначную точность, что является подтверждением выводов математического моделирования. Также показано, что погрешность определения высотной координаты от углового смещения продольной оси ВСД относительно оси трубопровода может составлять 1…3 м, предложенные способы позволяют снизить данную погрешность до 0.2…0.5 м, что является достаточной для практики точностью. В заключении сформулированы основные выводы диссертационной работы:
Основное содержание диссертационной работы отражено в следующих публикациях: Статьи в российских рецензируемых научных журналах, рекомендуемых ВАК РФ
Патенты и государственные свидетельства
Прочие публикации
Подписано в печать 19.11.13 Формат 60x84 1/16 Бум. офсет Усл. печ. л. 1,0 Уч.-изд. л. 1,0 Тираж 100 экз. Заказ 199 Бесплатно Саратовский государственный технический университет 410054, Саратов, Политехническая ул., 77 Отпечатано в издательстве СГТУ. 410054, Саратов, Политехническая ул., 77 Т |