методы исследований. Цитология. Эмбриология - shikardos.ru o_O
Главная
Поиск по ключевым словам:
Похожие работы
Название работы Кол-во страниц Размер
Методы прикладных социальных исследований павел Романов Елена Ярская-Смирнова 11 4140.1kb.
Культурная антропология и методы социокультурных исследований для... 1 121.79kb.
Программа дисциплины Качественные методы политических исследований... 1 338.16kb.
Название Место издания 1 222.49kb.
Облицова Татьяна Александровна, учитель информатики 1 145.18kb.
Методы лингвистических исследований. Метод типологии 1 117.5kb.
Современные методы информационного противоборства на основе исследований... 3 430.72kb.
Эпидемиологических исследований 1 129.89kb.
Учебное пособие для вузов. Москва : мгту им. А. Н. Косыгина, 2004. 1 15.02kb.
К концу XIX века спиритуализм имел миллионы приверженцев по обоим... 1 62.88kb.
Методы принятия управленческих решений 4 879.1kb.
«шале ял кундем» администрация муниципальный муниципального образованийын... 1 298.88kb.
- 4 1234.94kb.
методы исследований. Цитология. Эмбриология - страница №1/4

ВВЕДЕНИЕ. МЕТОДЫ ИССЛЕДОВАНИЙ. ЦИТОЛОГИЯ. ЭМБРИОЛОГИЯ.

  1. Формирование гистологии как науки. Вклад отечественных ученых в развитие этой науки.

  2. История развития гистологии как науки. Роль отечественных ученых в развитие гистологии.

  3. Специальные методы исследования в гистологии, возможности их применения в клинике.

  4. Техника изготовления гистологических микропрепаратов для световой и электронной микроскопии.

  5. Клеточная теория. Основные положения клеточной теории, их значение для биологии и медицины. Клетка и ее производные.

  6. Основные положения клеточной теории. Определение клетки. Способы репродукции клеток, их морфологическая характеристика.

  7. Ядро клетки. Основные компоненты ядра и их структурно – функциональная характеристика. Значение ядра в жизнедеятельности клетки.

  8. Клетка. Общая морфофункциональная характеристика. Цитоплазма. Классификация органелл. Структурно – функциональная характеристика органелл участвующих в биосинтезе веществ в клетках.

  9. Клетка как структурно – функциональная единица тканей. Органоиды мембранного типа, их химический состав, строение и функции.

  10. Клетка. Органеллы немембранного строения: микро- и ультрамикроскопическая характеристика и функции.

  11. Клетка как структурно – функциональная единица тканей. Жизненный цикл клетки: его этапы и их характеристика, особенности у различных видов клеток.

  12. Клетка. Определение. Включение клетки. Классификация, химическая и морфологическая характеристика включений.

  13. Клеточная оболочка: ее строение, химический состав, функции. Межклеточные соединения (контакты), типы и их структурно – функциональная характеристика.

  14. Половые клетки. Общая морфофункциональная характеристика половых клеток, отличие от соматических клеток. Овогенез и сперматогенез в сравнительном аспекте.

  15. Оплодотворение яйцеклетки, дробление зародыша и строение бластулы человека.

  16. Морфофункциональная характеристика начального периода эмбриогенеза у человека. Строение зародыша человека через 30ч.,50-60ч. и на 4 -5 сутки эмбриогенеза.

  17. Гисто – и органогенез. Дифференцировка зародышевых листков и образование тканей и органов у зародыша человека.

  18. Этапы эмбриогенеза. Типы гаструляции. Морфологическая характеристика гаструляции у зародыша человека.

  19. Образование, строение и функции провизорных органов у зародыша человека

  20. Понятие о критических периодах в прогенезе, эмбриогенезе и постнатальном развитии. Влияние экзо- и эндогенных факторов на развитие плода.

  21. Связь зародыша с материнским организмом. Имплантация. Плацента человека, ее развитие, строение и функции. Типы плацент у млекопитающих.

ОБЩАЯ ГИСТОЛОГИЯ (ТКАНИ).

  1. Ткань. Определение. Классификация. Основы кинетики клеточных популяций. Основные способы регенерации тканей.

  2. Эпителиальные ткани. Общая морфофункциональная характеристика. Классификация. Специальные органеллы в эпителиоцитах, их строение и функции.

  3. Общая характеристика и классификация покровного эпителия. Однослойные эпителии: источники развития, строение различных видов однослойного эпителия. Локализация камбиальных клеток и физиологическая регенерация.

  4. Морфофункциональная характеристика, классификация покровного эпителия. Многослойные эпителии: разновидности, источники развития, строение и функции. Регенерация.

  5. Эпителиальные ткани: общая морфофункциональная характеристика, классификация. Железистые эпителии: классификация, секреторный цикл, типы секреции, регенерация.

  6. Кровь, ее форменные элементы. Эритроциты, количественное содержание, химический состав, строение и функции, продолжительность жизни. Ретикулоциты.

  7. Форменные элементы крови. Классификация и характеристика лейкоцитов. Зернистые лейкоциты: разновидности, строение, количественное содержание, функции.

  8. Понятие о системе крови. Форменные элементы крови. Кровяные пластинки: (тромбоциты), количество, строение и функции, продолжительность жизни. Тромбоцитопоэз.

  9. Классификация лейкоцитов. Агранулоциты, их разновидности: количественное содержание, строение и функции, продолжительность жизни. Понятие о Т- и В – лимфоцитах, субпопуляции и их функции. Клеточная кооперация в реакциях клеточного и гуморального иммунитета.

  10. Классификация лейкоцитов. Лейкоцитарная формула. Гранулоциты: количество, строение и функции разновидностей, продолжительность жизни.

  11. Собственно волокнистая соединительная ткань. Клеточные элементы и межклеточное вещество: строение и значение. Регенерация и возрастные изменения.

  12. Плотная волокнистая соединительная ткань. Источники развития, классификация, строение, функции и регенерация. Сухожилие как орган.

  13. Соединительные ткани со специальными свойствами: ретикулярная, жировая, пигментная, слизисто - студенистая ткань, эндотелий. Особенности строения и функции.

  14. Хрящевая ткань. Источники развития, общая морфофункциональная характеристика. Классификация, строение, функции и особенности регенерации разновидностей.

  15. Костная ткань. Классификация, отличие в строении разновидностей. Регенерация и возрастные изменения в костных тканях.

  16. Костная ткань. Общая морфофункциональная характеристика. Классификация. Источники развития, строение, особенности регенерации и возрастные изменения пластинчатой костной ткани.

  17. Нервная ткань. Источники развития. Классификация нейроцитов. Микро- и ультраструктура нейроцитов, особенности регенерации.

  18. Нервная ткань. Общая морфофункциональная характеристика. Нейронная теория. Понятие о рефлекторной дуги.

  19. Нейроциты. Классификация (морфологическая и функциональная), строение и особенности регенерации. Секреторные нейроциты.

  20. Нервные волокна. Морфофункциональная характеристика миелиновых и безмиелиновых нервных волокон. Миелинизация и регенерация нервных волокон. Нерв как орган.

  21. Нервная ткань. Синапсы. Классификация, строение, механизмы передачи нервного импульса в синапсах.

  22. Нервная ткань. Морфофункциональная характеристика. Источники развития. Нервные окончания, классификация, принцип строения.

  23. Нервная ткань Общая морфофункциональная характеристика. Источники развития. Нейроглия: классификация, строение и функции разновидностей нейроглиоцитов.

  24. Мышечная ткань. Общая морфофункциональная характеристика. Источники развития. Классификация. Эмбриональное развитие, строение и особенности регенерации поперечно – полосатой скелетной мышечной ткани.

  25. Поперечно – полосатая скелетная мышечная ткань. Развитие, строение, иннервация. Структурные основы сокращения мышечных волокон. Типы мышечных волокон, отличие в строении и метаболизме. Регенерация скелетной мышечной ткани.

  26. Гладкая мышечная ткань. Источники развития. Строение, особенности иннервации и сокращения. Регенерация.

  27. Поперечно- полосатая мышечная ткань сердечного типа. Источники развития. Морфофункциональная характеристика разновидностей кардиомиоцитов, особенности регенерации.

ЧАСТНАЯ ГИСТОЛОГИЯ.

  1. Сердце. Общая морфофункциональная характеристика. Источники развития, строение оболочек сердца. Разновидности кардиомиоцитов, отличие в строении и функции. Регенераторные возможности тканей сердца.

  2. Артерии. Источники развития. Общая морфофункциональная характеристика. Классификация. Зависимость строения от гемодинамических условий. Регенерация. Возрастные изменения.

  3. Сосуды микроциркуляторного русла. Общая морфофункциональная характеристика. Особенности строения и функции артериол, венул и капилляров.

  4. Морфофункциональная характеристика сосудов микроциркуляторного русла. Гемокапилляры, микро – и ультрамикроскопическое строение. Органоспецифичность капилляров, отличия в строении. Понятие и гистогематическом барьере.

  5. Спинной мозг. Развитие. Строение серого и белого вещества. Нейронный состав серого вещества. Чувствительные и двигательные пути спинного мозга.

  6. Головной мозг. Общая морфофункциональная характеристика больших полушарий. Нейрорнн7ая организация коры, понятие о колонках (модулях). Цито – и миелоархитектоника больших полушарий. Гематоэнцефалический барьер: строение и функции.

  7. Мозжечок. Строение и функции. Нейронный состав коры, афферентные и эфферентные нервные волокна мозжечка.

  8. Автономная (вегетативная) нервная система. Общая морфофункциональная характеристика. Строение экстра - и интрамуральных ганглиев и яде6р центральных отделов автономной нервной системы.

  9. Органы чувств. Общая морфофункциональная характеристика. Понятие об анализаторах. Классификация органов чувств. Органы обоняния и вкуса: источники развития, строение и цитофизиология.

  10. Орган зрения. Источники развития, строение глазного яблока. Сетчатка, ультрамикроскопическое строение палочек и колбочек. Адаптивные изменения сетчатки на свету и в темноту.

  11. Органы слуха. Развитие и строение внутреннего уха. Строение и цитофизиология кортиевого органа.

  12. Органы равновесия. Источники развития, строения, функции. Морфофункциональная характеристика волосковых сенсоэпителиальных клеток, их цитофизиология

  13. Источники развития, строение красного косного мозга. Характеристика постэмбрионального кроветворения в органе. Взаимодействие стромальных и гемопоэтических элементов в красном костном мозге.

  14. Органы кроветворения. Тимус. Источники развития, строение и функции. Кроветворная и эндокринная функции тимуса. Понятие о возрастной и акцидентальной инволюции.

  15. Понятие об иммунной системе. Селезенка: источники развития, строение и функции. Особенности кровоснабжения. Эмбриональное и постэмбиональное кроветворение в селезенке.

  16. Органы кроветворения, классификация и общая морфофункциональная характеристика. Лимфатические узлы: источники развития, гистологическое строение и функции

  17. Гипофиз. Источники развития и основные этапы эмбрионального развития. Строение: клеточный состав, морфофункциональная характеристика аденоцитов. Связь гипофиза с гипоталамусом и ее значение.

  18. Щитовидная железа. Источники и основные этапы развития. Строение, функции. Гипер – и гипофункции. Особенности секреторного цикла в тироцитах, его регуляция.

  19. Околощитовидная железа. Источники развития. Строение и фукнк5ции. Возрастные изменения. Клеточные элементы других органов, участвующих в регуляции кальциевого гомеостаза.

  20. Морфофункциональная характеристика эндокринной системы. Надпочечники. Источники развития, строение, функции коркового и мозгового вещества. Регуляция функции органа.

  21. Одиночные гормонпродуцирующие клетки. Локализация. Современные представления об источн6иках развития. Морфофункциональная характеристика АРUD-клеток, их роль в регуляции функции органов.

  22. Пищеварительная трубка. Общий план строения стенки, иннервация и васкуляризация. Морфофункциональная характеристика эндокринного и лимфоидного аппарата пищеварительной трубки.

  23. Развитие ротовой полости. Общая морфофункциональная характеристика слизистой оболочк5и ротовой полости. Губу, язык: строение, функции и возрастные особенности.

  24. Зубы. Источники и основные этапы развития. Строение и регенерация твердых тканей зуба: эмали и дентина. Возрастные изменения.

  25. Зубы. Источники и основные этапы развития. Строение , функции и особенности регенерации мягких тканей зуба – пульпа зуба и периодонта.

  26. Большие слюнные железы. Развитие, особенности гистологического строения различных больших слюнных желез. Регенерация, васкуляризация и иннервация. Возрастные изменения.

  27. Желудок. Источники развития. Особенности строения различных отделов. Гистофизиология желез желудка. Регенерация, возрастные особенности строения.

  28. Тонкая кишка. Общая морфофункциональная характеристика. Источники развития. Особенности строения различных отделов, функции. Регенерация, возрастные изменения.

  29. Толстая кишка. Общая морфофункциональная характеристика. Источники развития. Особенности строения различных отделов, функции. Регенерация, возрастные изменения.

  30. Печень. Общая морфофункциональная характеристика. Источники развития. Классическое представление о строении дольки печени. Особенности кровоснабжения, регенерация.

  31. Желчный пузырь, источники развития, строение и функции.

  32. Поджелудочкая железа. Источники и развитие. Строение и гистофизиология экзо – и эндокринных частей органа. Регенерация. Возрастные изменения.

  33. Кожа. Развитие. Строение кожи подошв и ладоней. Процесс кератинизации и физиологической регенерации эпидермиса. Рецепторный аппарат кожи.

  34. Кожа. Общая морфофункциональная характеристика. Источники развития. Строение кожи и ее производных – волос, кожных желез ногтей. Возрастные, половые особенности кожи.

  35. Дыхательная система. Морфофункциональная характеристика. Источники развития. Особенности. Состав и строение респираторного отдела. Аэрогематический барьер, ультраструктура составных элементов. Особенности кровоснабжения легких.

  36. Дыхательная система. Общая морфофункциональная характеристика. Источники и развитие. Воздухоносные пути. Строение, функции трахеи и бронхов различного калибра.

  37. Почки. Источники и основные этапы развития. Строение и функции почек. Морфологические основы гормональной функции почек.

  38. Почки. Источники и основные этапы развития. Нефроны, их разновидности, отличия в строении и функции. Эндокринная функция почек.

  39. Мочеточники, мочевой пузырь, мочеиспускательный канал. Источники развития, строение, васкуляризация и иннервация.

  40. Яичко. Источники развития, эмбриональный и постэбриональный гистогенез в яичках. Строение функции. Сперматогенез и его регуляция. Роль гематотестикулярного барьера в поддержании интратубулярного гомеостаза. Гормональная функция яичек.

  41. Придаток яичка и предстательная железа: источники эмбрионального развития, особенности строения, функции.

  42. Яичники. Источники и основные этапы развития. Строение и функции. Циклические изменения в яичнике в период половой зрелости и их гормональная регуляция. Эндокринные функции яичников.

  43. Матка, яйцеводы, влагалище. Источники развития, строение и функции. Циклические изменения в органах женской половой системы и их гормональная регуляция. Возрастные изменения.

  44. Молочная железа. Развитие, особенности строения лактирующей и нелактирующей железы. Регуляция лактации.



1 и 2

История науки: -тесно связано с изобретением микроскопа.

Галилео Галилей (1609г) и Корнелий Дреббел (1617г) впервые изобретатели микроскопов кот. были утеряны.



Наиболее известные исследователи (17-18 вв):

Роберту Гуку – открыл раст. кл, (все раст. сост. из кл.)

Антон-Ван-Левенгук – микроскопич. живот (инфузорий, эритроцит, сперматозоид)

Каспар Фридрих Вольф — появление нов. раст. кл. путем выдавливания жид, кот. превращ. в нов. кл.

Ксавье Биша — макроскопическая классификация тканей (21 тканей)

Ян Пуркинье - окрака (индиго), просветлял срезы бальзамом и создал микротом.

Лейдиг и Келликер - первая микроскопичесая классификацию тканей.
Матиас Шлейден - теорию цитогенеза.
Теодор Шванн - клеточная теория:

1)все ткани состоят из клеток;


2) все клетки развиваются по общему принципу;
3) каждой клетке присуща самостоятельная жизнедеятельность (организм — сумма клеток);

Рудольф Вирхов - дальнейшее развитие клеточной теории:

  1. Клетка — от клетки.

  2. Клетка — самый мелкий элемент живого и из них состоят все живые существа.

  3. Организм — совокупность клеток, взаимосвязанных друг с другом.

  4. Создал теорию «целюлярной патологии» — т.е. болезнь - нарушение строения и функции клеток.

Э.Страсбургер – гипотеза: ядро -носитель наследственных св-тв. Изучал митоз.
Рихард Гертвиг - закон постоянства ядерно-плазменного отношения: m ядра / m плазмы = const.
Первые микроскопы в Россию были привезены Петром I.

В Петербургском академии наук (Л.Шеппером) было организовано изготовление микроскопов.


В МГУ первая кафедра гистологии — зав.каф. А.И.Бабухин
В Киевском универ-те — ПИ Перемежко (1968) основал каф.гистологии. Изучал развития зародышевых листков.
Основатель Казанской школы — И.А. Арнштейн — занимались проблемой нейрогистологии.

Отечественные исследователи:
1. АА Заварзин — теория «параллельных рядов в тканевой эволюции» — развитие тканей у разных типов происходит сходно, параллельными рядами.
2. НГ Хлопин — создал теорию «дивергентной эволюции тканей» — ткани развиваются дивергентно, путем расхождения признаков.
В БГМУ каф. Гистологии появилась в 1934 году под рук. Николая Илларионовича Чурбанова. Изучали нейроэндокринного аппарата пищевар. системы, влиянием производственных факторов на организм матери и плода, регенерации мышечных тканей.

3.

Методы исследования в гистологии:


I. Основной метод — микроскопирование.
А. Световая микроскопия — исследования  обычным световым мик-пом.
Б. Спец-ые методы микроскопирования:
- фазовоконтрастный микроскоп (для изуч. живых неокраш-х обьектов)
-темнопольный микроскоп (для изуч. живых неокраш-х обьектов)
-люминесцентный мик-п (для изуч. живых неокраш-х обьектов)
-ультрафиолетовый мик-п (повышает разрешающую способность м-па)
-поляризационный мик-п(для иссл. обьектов с упорядоч. располож. молекул—скелет. муск-ра, коллаген. волокна)
-интерфекренционная микроскопия (для опред-я сухового остатка в клетках, определение толщины обьектов)
В. Электронная микроскопия:
-трансмиционная (изучение обьектов на просвет)
-сканирующий (изучение поверхности обьектов)
II. Специальные (немикроскопические) методы:
1.Цито-или гистохимия-использовании хим. Реакц. с свет. конеч. продуктом для опр. кол-ва различ. вещ-тв.
2. Цитофотометрия — можно узнать кол-во, выявленные цитогистохимическим методом белки, ферменты и т.д.
3. Авторадиография — ввод радиоактивных изотопов и наблюдение за перемещением этих веществ по излучению.
4. Рентгентоструктурный анализ — позволяет определить кол-во хим. элементов в клетках.
5. Морфометрия — измерение размеров биол. структур на клеточном и субклеточном уровне.
6. Микроургия —операций под микроскопом (пересадка ядер, введение в клетки различных веществ и т.д.)
6. Метод культивирования клеток и тканей — в питательных средах.
7. Ультрацентрофугирование — фракционирование клеток или его структур путем центрофугирования.
8. Экспериментальный метод.
9. Метод трансплантации тканей и органов.

4.

Техника изготовления:



  1. Взятие материала

  2. Фиксация (формалин, спирт, ацетон)

  3. Промывание

  4. Обезвоживание (в спирту с увеличивающейся концентрацией: 50-60-70-80-96)

  5. Уплотнение (для свет.мкрп-парафин, для электр.мкрп-смолы)

  6. Приготовление срезов (при пом. микротома)

  7. Окрашивание (основ-гематоксилин-ядра в син.цв, эозин и эритрозин –кислый-цитоплазму в красн, нейтральн.)

  8. Обезвоживание срезов

  9. Просветление срезов

  10. Заключение срезов (наносят канадский бальзам и покрывают стеклом)

5,6


Основные положения современной клеточной теории:
I. Клетка — стр. единица живого, вне которой нет жизни.
II. Клетки гомологичны.
III. Клетка от клетки и только от клетки.
IV. Клетка — часть организма. Клетки обьединены в системы тк. и органов, системы органов — целый организм.

Клетка — это элементарная живая система, состоящая из цитоплазмы, ядра, оболочки(цитолеммы) и являющаяся основой развития, строения и жизнедеятельности организмов.

Существует 2 способа репродукции клетки – мейоз и митоз.


МЕЙОЗ– деление клетки с уменьшением числа хромосом в дочерних клетках в двое.

Первое деление:

Профаза I – спаривание гомологичных хромосом, образование аппарата деления.

Фаза Лептотены – упаковка хромосом.

Фаза Заготена – конъюгация (соединение) гомологичных хромосом с образованием бивалент (тетрад) (2n4c)

Фаза Пахитена – кроссинговер (перекрест), обмен м/у участками гомологичных кромосом.

Фаза Диплотена – частичная деконденсация (отталкивание) хромосом.

Фаза Диакенез – конденсация ДНК, растворение ядерной оболочки, центроли расходятся к полюсам.



Метафаза I – бивалентные хромосомы встраиваются вдоль экватора клетки.

Анафаза I – биваленты делятся и хромосомы расходятся к полюсам. (n2c)

Телофаза I – хромосомы деспирализуются и появляется ядерная оболочка (образуются дочерние клетки)

Второе деление

Профаза II – конденсация хромосом, деление клеточного центра и расхождение центриоль к полюсам ядра, разрушение ядерной оболочки, образование веретено деления

Метафаза II – униваленты (хромосомы состоящие из 2-х хромотид) располагаются на экваторе образуя метофазную пластинку.

Анафаза II- униваленты делятся и хроматиды расходятся к полюсам клетки.

Телофаза II – хромосомы деспирализуются и появляется ядерная оболочка (образуются 4 гаплойдные клетки)(nc).
МИТОЗ –(кариокинез) непрямое деление клетки (4 стадий).

Профаза – ядро увеличивается, хромосомы начинают сперализоваться, центроли расходятся к полюсам и начинается веретено деления.

Метафаза – хромосомы располагаются в экваторе клетки, нити веретнео деления прикрепляются к каждой хромосоме

Анафаза – дочерние хроматиды отделяются и расходятся к полюсам клетки.

Телофаза – хроматиды раскручиваются и вокруг них формируются ядерные оболочки = 2 ядра. Происходит деление цитоплазмы и органойдов.
7-10

Ядро — часть клетки, хранит наследственную info. Окружено кариолеммой, имеющей поры. В ядре содержится кариоплазма, основу кот. составляет белковый матрикс (негистоновые белки). В  матриксе располагается хроматин — ДНК с гистоновыми и негистоновыми белками. Хроматин может быть деконденцированным (светлым) — эухроматин и наоборот, конденсированным (темным) — гетерохроматин. Чем больше эухроматина, тем интенсивнее синтетические процессы (метаболизм) в клетке, и наоборот, преобладание гетерохроматина показывает на снижение синтетических процессов.

Ядрышко — самая плотная, структура ядра (D=1-5 мкм) —производный хроматина. Образует рРНК и рибосомы.

Цитолемма — это био-мембрана покрытая снаружи гликокаликсом. Она состоит из бимолекулярного слоя липидов, обращенных друг к другу гидрофобными полюсами; куда вмонтированы белки: интегральные (пронизывают), полуинтегральные (в толще) и периферические(на поверхности).

Функция: разграничительная; транспорт вещ-тв; рецепторная; контакт с соседними клетками.

Гликокаликс — это глико - липидный/протеиновый комплекс на наружной пов. цитолеммы, содержащий ферменты участвующие во внеклеточном расшиплении веществ.
На наружной поверхности цитолеммы могут иметься рецепторы:
- «узнавание» клетками друг друга;
- рецепция воздействия хим. и физ. факторов, гормонов, медиаторов, А-гена и т.д.

Гиалоплазма — это гомогенная система, кот. может переходит из состояния золь в гель. Состоит из дисперсной среды (вода и растворенные соли) и дисперсной фазы (мицеллы белков, жиров, углеводов и тд).

Компартменты — это структуры, находящиеся в гиалоплазме. (органоиды и включения)

Органоиды — постоянные структуры цитоплазмы.

1 классификация:
1. Мембранные — ЭПС, мтх, пластинчатый комплекс, лизосомы, пероксисомы.
2. Немембранные — рибосомы, микротрубочки, центриоли, реснички.
2 классификация:
1. Общего назначения (во всех кл): мтх, ЭПС, пластинчатый комплекс, лизосомы, кл. центр, пероксисомы.
2. Спец. назначения: реснички, микроворсинки, тонофибриллы; нейрофибриллы и базофильное вещ-во, миофибриллы.

Строение и функции органоидов:

1. Митохондрии —Окружены двойной мембраной: наружная ровная, внутренняя шероховатая образует складки - кристы; полость заполнена матриксом. Функция: аккумулирование Е в виде АТФ, при «сжигании» белков, жиров, углеводов.

2. ЭПС— сеть канальцев. Различают ЭПС гранулярного типа (стенки имеют рибосомы - синтезирующие белки),  и агранулярного типа (без рибосом) — синтезируют жиры, липиды и углеводы.

3. Пластинчатый комплекс (Гольджи) — система наслоенных друг на друга уплощенных цистерн и отходящих от них пузырьков (везикул). Функция —упаковка продуктов синтеза в везикулы, ограниченных мембраной. кот. потом экзоцитолизом выводятся из клетки.



4.Лизосомы — стр. овальной формы, содержащие литические ферменты. Обеспеч. внутриклеточ. переваривание.
6.Клеточный центр — Состоит из 2-х перпендикулярных центриолей; кот. сост. из 9 пар триплетов(3-х микротрубочек) образующие цилиндр. При делении клетки центриоли располагаются на полюсах и растаскивают хромосомы.
7.Реснички — выросты клетки. Строение как у центриолей.
8.Микроворсинки — выросты клеток, увеличивают площадь пов. клетки. Обеспеч. функцию всасывания (кишечник, почечные канальцы).
9.Миофибриллы — состоят из сократительных белков актина и миозина, имеются в мышечных клетках.
10.Нейрофибриллы —совокупность нейрофибрилл и нейротрубочек, встречается в нейроцитах. В теле клетки располагаются беспорядочно, а в отростках — параллельно друг к другу. Выполняют функцию цитоскелета нейроцитов, а в отростках участвуют в транспортировке веществ от тела нейроцитов по отросткам на периферию.
11.Базофильное вещ-тво — имеется в нейроцитах и обеспечивает внутриклеточную регенерацию в нейроцитах (обновление изношенных органоидов). Отвечает за синтез белков.
12. Пероксисомы — овальные тельца (~1мкм) -содержат каталазы разрушающие перекисные радикалы, кот. образуются при метаболизме.

11.


Жизненный цикл клетки (состоит из интерфазы и митоза):

Интерфаза – период от возникновения до митоза. (между митозами). Состоит из 3-х фаз(периодов):

G1-фаза (предсинтетический период) – подготовка клетки к синтезу ДНК.

S-фаза (синтетический период) – удвоение ДНК.

G2-фаза (постсинтетический период) – подготовка клетки к митозу.
12

Включения — непостоянные структуры цитоплазмы, могут появляться или исчезать, в зависимости от состояния клетки. Они бывают:
I. Трофические — запас гранул с пит. вещ-вами (белки, жиры, углеводы). Пр: белковые гранулы в желтке яйцеклетки.
II. Пигментные — гранулы с пигментами. Примеры: меланин в коже (для защиты от УФЛ), гемаглобин в эритроцитах, родопсин и йодопсин в сетчатки глаза.
III. Секреторные— гранулы секрета, подготовленные для выделения (в клетках желез). Пример: гранулы в панкреатоцитах.
IV. Экскреторные— конечные продукты обмена веществ, подлежащие удалению. Пример: мочевина, мочевой к, креатинина в эпителиоцитах почечных канальцев
14.

Гаметыполовые клетки, имеющие гаплоидный (одинарный) набор хромосом. При слиянии двух гамет образуется зигота.
Отличия половых клеток от соматических клеток:

1. У половых клеток гаплоидный набор хромосом , у соматических — диплоидный.

2. Для половых клеток характерно сложное, стадийное развитие; (мейоз)

3. Половые клетки имеют специальные приспособления: сперматозоид – хвостик, акросому для проникновения в я/к;


- яйцеклетка имеет желток (запас питательных веществ) и оболочки (I, II, III).

4. У пол. кл. особое ядерно-цитоплазматическое отношение: у муж.пол. кл. преобладает ядро над цитоплазмой, в женских наоборот.

5. Обмен веществ в зрелых половых клетках до оплодотворения находится на очень низком уровне.

6. Из соматической кл. может образоваться лишь такая же дочерняя кл., а из пол. кл. формируется целый нов. организм.


Прогенез – процессы развития половых клеток (овогенез и сперматогенез).
Сперматогенез – начинается после половго созревания. (4 стадии)

I - размножение: размножение стволовых половых клеток (сперматогоний типа А) митозом.

II - рост: подготовка к мейозу – увелечение клетки, синтез ДНК и кроссенговер, сперматогонии превращаются в сперматоциты I порядка.

III – созревание: происходит мейоз – два деления без удвоения хромосом – образуются гаплоидные хр-мы, т.е. из одного сперматоцита I порядка образуется 4 сперматида.

IV –формирование: сперматиды избавляются от излишной цитоплазмы, покрываются гликокаликсом, приобретают конечную структуру, т.е. превращаются в сперматозоиды.
Овогенез – начинается в эмбриональном периоде (3 стадии).

I - размножение: размножение стволовых половых клеток (овогоний) митозом.

II - рост: Протекает в 2 периода: “период малого роста” (в эмбриональном периоде)- увеличение половой клетки, синтез ДНК и кроссенговер, и “период большого роста” (после полового созревания) - овоцит I порядка увеличивается и приобретает вторичную оболочку, накапливает желток (трофические включения).

III – созревание: происходит мейоз начинается еще в эмбриональном периоде, и заканчивается после полового созревания и из 1 овоцита I порядка образуется 1 овоцит II порядка и первое редукционное тельце, а после второго деления – 1 яйцеклетка и второе редукционное тельце. Первое редукционное тельце также может поделиться, в итоге из одного овоцита I порядка образуется 1 яйцеклетка и 3 (или 2) редукционные тельца.

15.


В эмбриогенезе различают следующие этапы:

  1. Оплодотворение.

  2. Дробление.

  3. Гаструляция.

  4. Гистогенез, органогенез, системогенез (далее дифференцировка зародышевых листков).



Оплодотворение - бывает наружным (развивающихся в водной среде) и внутренним. Этапы:

  1. дистантное взаимодействие половых клеток;

  2. сближение половых клеток;

  3. проникновение мужской половой клетки в женскую.



При дистантном взаимодействии большое значение имеют хемотаксис и реотаксис.

Хемотаксис - способность сперамтозойдов двигаться против градиента концентрации гемогомонов (специфические вещества, выделяемые женской пол.кл). т.е. туда где выше концентрация.

Реотаксис — способность спематозоидов двигаться против тока жидкости. А жидкость в маточных трубах течет по направлению: маточные трубы —> матка —> влагалище.

Кроме таксисов сближению половых клеток способствуют:


- перистальтика маточных труб;
- мерцательное движение ресничек эпителия маточных труб.
На близком расстоянии встрече половых клеток способствует противоположная заряженность половых клеток. Распознавание половых клеток после контакта осуществляется при помощи специфических рецепторов. После контакта только одна мужская половая клетка при помощи ферментов акросомы проникает в я/к; оболочка я/к изменяет свои свойства, становится непроницаемой для других сперматозоидов, т.е. образуется оболочка оплодотворения.

Дробление - деление оплодотворенной я/к митозом на бластомеры. Дробление происходит быстро, поэтому бластомеры не успевают расти, и с каждым делением уменьшаются.

Тип дробления зависит от типа я/к:


Полное дробление —в дроблении участвуют все участки зародыша; характерно для олиго-изолецитальных и мезо-умеренно телолецитальных я/к.
Неполное дробление — дробление идет только на анимальном полюсе, вегетативный полюс перегружен желтком и в дроблении не участвует. Характерно для поли- и резко телолецитальных я/к (птицы).
Равномерное дробление — бластомеры одинаковые; хар-но для олиго- и I изолецитальных я/к (ланцетник).
Неравномерное дробление —бластомеры разные: одни крупные, другие мелкие; одни дифференцируются в тело зародыша, другие — для питания; хар-но для мезо- и полилецитальных (лягушка, птица), а также для олигоIIизолецитальных я/к (млекопитающие).
Синхронное дробление — все бластомеры дробятся с одинаковой скоростью.
Асинхронное дробление — бластомеры дробятся с разной скоростью.

Дробление зиготы чел-ка нач. в конце 1-х суток после оплодотворения.

На 2-3-и сутки зародыш нах. в маточных трубах и имеет вид плотного узелка — морулы, в центральной части кот. нах. крупные темные бластомеры — эмбриобласт, а по периферии -мелкие светлые бластомеры = трофобласт.

На 4-е сутки бластула нах. в проксимальной части маточной трубы и имеет вид пузырька. Бластомеры трофобласта всасывают секрет маточной трубы и секретируют жидкость, поэтому трофобласт растягивается и превращается в пузырек, с жидкостью, а эмбриооласт прикрепляется на одном полюсе к трофобласту изнутри. Такая бластула называется эпибластулой (бластоциста).

На 5-е сутки бластоциста попадает в полость матки и остается там до 7-х суток, за это время увеличивается в размерах (100 и более бластомеров).


Гаструляция — это сложный процесс, где в результате размножения, роста, днфференцировкн н направленного перемещения клеток образуется 3-х листковый зародыш. Гаструляция происходит 7-17 сутки и осуществляется путем деламииации (расщипления) (7-14 сутки) и иммиграции (выселения) (14-17 сутки).
В 7-е сутки эмбриобласт расщепляется на 2 слоя: верхний слой — эпибласт или первичная эктодерма (содержит материал будущей эктодермы, мезодермы, хорды и части энтодермы) и нижний слой — гипобласт (будущая энтодерма после присоединения клеточного материала прехордальной пластинки из эпибласта). Почти одновременно с этим происходит выселение клеток из эпи- и гипооласта — внезародышевая мезенхима, которая выстилает внутреннюю поверхность трофобласта. Далее в течение 2-й недели эпибласт и гипобласт начинают прогибаться в противоположных направлениях и превращаются в пузырьки: из эпибласта образуется амниотнческий пузырек, нз гипобласта — желточный пузырек. Эти 2 пузырька окружаются внезародышевой мезенхимой. Соприкасающиеся поверхности амниотнческого и желточного пузырька имеют вид диска (или щитка) и соответственно называются зародышевым эпибластом и зародышевым гипобластом, а вместе — зародышевым щитком. Остальные участки амниогического и желточного пузырька называются внезародышевым эпи- и гипобластом.
После гаструляции начинается— дальнейшая дифференцировка зародышевых листков и образование из них тканей, органов (гистогенез, органогенез, системогенез).
Мезодерма подразделяется на 3 части:

дорсальная часть — сомиты, кот. в свою очередь состоят из дерматомов, миотомов и склеротомов;



вентральная часть мезодермы — спланхнотомы, состоящие из париетальных и висцеральных листков; часть мезодермы соединяющая сомиты со спланхнотомами в передней части туловища сегментируется и назвается нефрогонотомами (синоним: сегментные ножки), а в задней части туловища не сегментируется и называется нефрогенной тканью.
Пространство между 3-мя зародышевыми листками заполняется мезенхимой (образуется путем выселения из всех 3-х листков, но преимущественно из мезодермы).
Из эктодермы в дорсальной части путем впячивания образуется осевой орган — нервная трубка, из кот. образуется вся НС.
Гаструляция у млекопитающих протекает как у птиц, хотя имеются некот. особенности. На I стадии путем деляминации из эмбриобласта образуются также эпибласт и гипобласт. Дальше эпибласт и гипобласт начинают прогибаться в противоположных направлениях и образуют соответственно 2 пузырька: из эпибласта — амниотический, из гипобласта — желточный. Лишь только после этого начинается II этап гаструляции — иммиграция, протекающая практически как у птиц.
II этап гаструляции — иммиграция начинается на части эпибласта, являющейся дном амниотического пузырька: I фаза — подготовка к выселению с образованием на поверхности дна амниотического пузырька прехордальной пластинки, I узелка, I полоски. А дальше идет II фаза иммиграции — собственно выселение клеток этих 3-х структур: клетки прехордальной пластинки включаются в состав гипобласта и образуется энтодерма; из I узелка образуется хорда, а из клеток I полоски после выселения образуется средний зародышевый листок — мезодерма.

Из зародышевых листков образуется:


I.   ЭКТОДЕРМА:

  1. эпидермис кожи и его производные (сальные, потовые, молочные железы, ногти, волосы),

  2. нервная ткань, нейросенсорные и сенцоэпителиальные клетки органов чувств,

  3. эпителий ротовой полости и его производные ( слюнные железы, эмаль зуба, эпителий аденогипофиза), эпителий и железы анального отдела прямой кишки;

II. МЕЗОДЕРМА:

  1. дерматомы — собственно кожа (дерма кожи);

  2. миотомы — скелетная мускулатура;

  3. склеротомы — осевой скелет (кости, хрящи);

  4. нефрогонотомы (сегментные ножки) — эпителий мочеполовой системы;

  5. спланхнотомы — эп. сероз.покровов (плевра, брюшина, околосердеч.сумка), гонады, миокард, корк. часть надпочеч;

  6. нефрогенная ткань — эпителий нефронов почек.

III. ЭНТОДЕРМА:

  1. часть энтодермы, образованная из прехордальной пластинки — эпителий и железы пищевода и дыхательной системы;

  2. часть энтодермы, образованная из гипобласта — эпителий и железы всей пищеварительной трубки (включая печень и поджелудочную железу); участвует при образовании переходного эпителия мочевого пузыря (аллантоис).

IV. МЕЗЕНХИМА:

  1. все виды соединительной ткани (кровь и лимфа, рыхлая и плотная волокнистая соед.ткань, соед.ткань со специальными свойствами, костные и хрящевые ткани);

  2. гладкая мышечная ткань;

  3. эндокард.

19.

ПРОВИЗОРНЫЕ ОРГАНЫ — это временные органы, функционируют только в эмбр. периоде, к ним относятся:

  1. Хорион — см. выше.

  2. Амнион — образуется из внезародышевой эктодермы и мезенхимы. Функция — создает благоприятную защитную водную среду вокруг зародыша

  3. Желточный мешок — образуется из внезародышевой энтодермы и мезенхимы. Функции: обеспечивает питание зародыша; там образуются первые кровеносные сосуды, первые клетки крови и половые клетки — гонобласты.

  4. Аллантоис («мочевой мешок») — это слепое выпячивание энтодермы в заднем отделе первичной кишки; в нем накопливается шлаки обмена плода, т.е. выделительная функция; у млекопитающих является проводником пупочных сосудов плода и участвует при формировании эпителия мочевого пузыря.

  5. Серозная оболочка — имеется только у птиц, образуется из внезародышевой эктодермы и париетального листка спланхнотомов; функция — обеспечение дыхания и защита зародыша.



21.

ПЛАЦЕНТА
При формировании плаценты участвуют со стороны плода трофобласт и внезародышевая мезенхима. А со стороны матери — слизистой матки. Трофобласт и внезародышевая мезенхима образуют хорион. Это происходит так: вначале трфобласт представляет собой полый пузырек из одного слоя клеток, в последующем клетки трофобласта начинают усиленно размножаться и трофобласт становится многослойным. Причем клетки наружных слоев сливаются друг с другом и образуют симпласт — этот слой называется симпластическим трофобластом; самый внутренний слой трофобласта сохраняет клеточное строение и называется клеточным трофобластом (цитотрофобласт). Параллельно с этим из эмбриобласта выселяются клетки — внезародышевая мезенхима и она покрывает внутреннюю поверхность цитотрофобласта. Эти 3 слоя вместе (симпластический и клеточный трофобласт, внезародышевая мезенхима) назваются хорионом или сосудистой оболочкой.


В дальнейшем симпластический трофобласт по всему периметру хориона образует выросты — I ворсинки хориона; I ворсинки хориона начинают выделят протеолитические ферменты, кот. разрушают эпителий матки и через образовавшуюся бреш зародыш внедряется в толщу слизистой матки, т.е. происходит имплантация; эпителий матки за зародышем восстанавливается и поэтому зародыш оказывается замурованным в толще слизистой матки.
Все 3 слоя хориона вместе образуют II ворсинки хориона, кот. проникают через стенки кровеносных сосудов слизистой матки и плавают в крови матери, т.е. начинается плацентация. В дальнейшем во II ворсинки хориона врастают сосуды плода и II ворсинки превращаются в III ворсинки. Кровь плода в сосудах плода в III ворсинках и кровь матери не смешиваются, между ними находится плацентарный барьер, кот. состоит из следующих слоев:
1. Эндотелий капилляров плода в III ворсинках.
2. Базальная мембрана капилляров плода.
3. Внезародышевая мезенхима.
4. Цитотрофобласт.
5. Симпластический трофобласт.
имплантация — внедрение зародыша в эндометрий матки (на 7-е сутки).

В имплантации выделяют 2 стадии;

1) адгезией — прилипание зародыша к эпителию матки,

2) инвазия: симпластический трофобласт начинает выделять протеолитнческие ферменты, которые разрушают эпителий матки, подлежащие ткани эндометрия и образуется имплантационная ямка, куда и внедряется зародыш. За зародышем разрушенный участок эпителия матки быстро регенерирует и восстанавливает целостность, поэтому зародыш оказывается замурованным в толше эндометрия. Симпластический трофобласт хориона продолжает выделять протеолитические ферменты, которые разрушают окружающую рыхлую соединительную ткань и мелкие кровеносные сосуды. Продуктами распада тканей и излившейся крови питается зародыш — это называется гистотрофным питанием. При гистотрофном питании существенное значение имеют децидуальные клетки эндометрия — крупные округлые клетки с оксифильной цитоплазмой, богатые трофическими включениями.

Типы плацент у млекопитающих:
1. Эпителиохориальная — ворсинки хориона проникают в просвет маточных желез, эпителий не разрушается (у свиньи).
2. Десмохориальная — ворсинки хориона проникают ч/з эпителий и контактируют с рыхлой соед.тканью эндометрия (у жвачных).
3. Эндотелиохориальная — ворсинки хориона проникают через эпителий матки и прорастают в стенку сосудов матери до эндотелия, но в просвет сосуда не проникают (у хищников).
4. Гемахориальная — ворсинки хориона проникают в сосуды матери, т.е. контактируют с кровью матери (у человека).

Ткань — это эволюционно сложившаяся система клеток и неклеточных структур, имеющих общий принцип строения, общую функцию, иногда и общий источник эмбрионального развития.

Различают 4 системы тканей:
1. Система эпителиальных тканей.
2. Система соединительных тканей.
3. Система мышечных тканей.
4. Система нервных тканей.

23-26


СИСТЕМА ЭПИТЕЛИАЛЬНЫХ ТКАНЕЙ.
Эпителиальные ткани (ЭТ) в филогенезе образуются первыми, т.е. древнейшяя система.

Основные свойства:
1. Пограничность — покрывают поверхности органов и полостей, т.е. разграничивают внутреннюю среду от окружающей среды.
2. Мало межклеточного вещества.
3. Клетки лежат плотно друг к другу.
4. Всегда располагается на базальной мембране и им отграничивается от подлежащей рыхлой соед. ткани.
5. Не имеет кровеносных сосудов, питается диффузно через базальную мембрану, за счет сосудов подлежащей рыхлой соед. ткани.
6. Гетерополярность — апикальные (верхушка) и базальные части клеток отличаются по строению и по функции.
7. Повышенная регенераторная способность, обусловленная пограничностью —чаще гибнут.
8. Эпителиоциты могут иметь органоиды специального назначения: реснички (воздухоносных путей); микроворсинки (кишечника и почек); тонофибриллы (кожа).

Функции: защитная; разграничительная; участие в обмене веществ между организмом и окр.средой; секреторная.

КЛАССИФИКАЦИЯ.
Морфофункциональная классификация (по строению и функции):-испульзуется более часто.

Однослойный


Однорядный


Плоский

Кубический

Цилиндрический (призматический)

Каемчатый

Железистый

Мерцательный

Многорядный

Мерцательный

Многослойный


Плоский неороговевающий

Плоский оговевающий

Переходный



Гистогенетическая классификация: (по происхождению или источникам развития).
1. кожного типа (эктодермальные)
2. кишечного типа (энтеродермальный)
3. почечного типа (нефродермальный) — эпителий нефрона.
4. целомического типа (целодермальный) — однослойный плоский эпителий серозных покровов
5. нейроглиального типа — эпиндимный эп. мозговых желудочков; эп. мозговых оболочек;


Однослойный плоский эпителий — состоит из одного слоя уплощенных клеток многоугольной формы; в клетках органоидов мало, встречаются митохондрии, одиночные микроворсинки, в цитоплазме видны пиноцитозные пузырьки. Однослойный плоский эпителий выстилает серозные покровы (брюшина, плевра, околосердечная сумка), эндотелий (клетки выстилающие кровеносные и лимфатические сосуды, полости сердца) .

Источники развития: эндотелий развивается из мезенхимы; однослойный плоский эпителий серозных покровов — из спланхнотомов .

Функции: разграничительная, уменьшает трение внутренних органов путем выделения серозной жидкости.

Однослойный кубический эпителий —кубической формы. Встречается в выводных протоках экзокринных желез, в извитых почечных канальцах.


Однослойный призматический (цилиндрический) эпителий —призматическо формы.Различают:
- однослойный призматический железистый (в желудке, в канале шейки матки) специализирован на непрерывную выработку слизи;
- однослойный призматический каемчатый, выстилает кишечник, на апикальной поверхности клеток имеется большое количество микроворсинок.
- однослойный призматический реснитчатый, выстилает маточные трубы; на апикальной поверхности кл. имеют реснички.

Регенерация однослойного однорядного эпителия происходит за счет стволовых (камбиальных) клеток, равномерно разбросанных среди других дифференцированных клеток.


Однослойный многорядный мерцательный эпителий — все клетки контактируют с базальной мембраной, но имеют разную высоту и поэтому ядра располагаются  на разных уровнях. Выстилает воздухоносные пути. В составе этого эпителия различают разновидности клеток:
- короткие и длинные вставочные клетки- уч. в регенерации;
- бокаловидные клетки — вырабатывают слизь.
- реснитчатые клетки.
Функция: очистка и увлажнение проходящего воздуха.


Многослойный эпителий — состоит из нескольких слоев клеток, с баз. мембраной контактирует только нижний ряд.


1. Многослойный плоский неороговевающий эпителий — выстилает передний (ротовая полость, глотка., пищевод) и конечный отдел (анальный отдел прямой кишки) пищеварительной системы, роговицу. Состоит из слоев:
а) базальный слой —сод. стволовые клетки для регенерации;
б) шиповатый слой — клетки шиповатой формы, клетки активно делятся.
в) покровные клетки — стареющие клетки, не делятся, постепенно слущиваются.

Источник развития: эктодерма. Прехордальная пластинка в составе энтодермы передний кишки.

Функция: механ. защита.




2. Многослойный плоский ороговевающий эпителий — это эпителий кожи. Развивается из эктодермы, защает от мех. повреждений, лучевого, бактериального и хим. воздействия, разграничивает организм от окружающей среды. Состоит из слоев:
а) базальный слой — сод. меланоциты — с включениями меланина — обеспечивают защиту от УФЛ.
б) шиповатый слой —кл. с шиповидными выростами.
в) зернистый слой — кл. с базофильными гранулами кератогиалина (предшественник кератина); клетки не делятся.
г) блестящий слой — клетки полностью заполнены элаидином (образуется из кератина и продуктов распада тонофибрилл); под микроскопом границ клеток и ядер не видно.
д) слой роговых чешуек — пластинки из кератина, содержащих кератосомы. Слущиваются.

3. Переходный эпителий — выстилает полые органы, стенка которых способна сильному растяжению (лоханка, мочеточники, мочевой пузырь). Слои:
- базальный слой (малодифференцированные и стволовые клетки, обеспечивают регенерацию;
- промежуточный слой — контактирующий с базальной мембраной (стенка не растянута, поэтому эпителий утолщен); когда стенка органа растянута грушевидные клетки уменьшаются по высоте и располагаются среди базальных клеток.
- покровные клетки — при растянутой стенки органа клетки уплощаются; клетки не делятся, постепенно слущиваются.

Источники развития: эп. лоханки и мочеточника — из мезонефрального протока (производное сегментных ножек), эп. мочевого пузыря — из энтодермы аллантоиса и энтодермы клоаки.


ЖЕЛЕЗИСТЫЙ ЭПИТЕЛИЙ
Железистый эп. (ЖЭ) -выработка секрета. ЖЭ образует железы:
I.   Эндокринные железы — не имеют выводных протоков, секрет выделяется в кровь или лимфу; обильно кровоснабжаются; вырабатывают гормоны или био- активные вещества.
II. Экзокринные железы — имеют выводные протоки, выделяют секрет на поверхность эпителия ( на наружные поверхности или в полости). Состоят из концевых (секреторных) отделов и выводных протоков.
Классификация экзокринных желез:
I.   По строению выводных протоков:
1. Простые — выводной проток не ветвится.
2. Сложные — выводной проток ветвится.
II. По строению (форме) секреторных отделов:
1. Альвеолярные — секреторный отдел в виде альвеолы, пузырька.
2. Трубчатые — секр. отдел в виде трубочки.
3. Альвеолярно-трубчатые (смешанная форма).
III. По соотношению выводных протоков и секреторных отделов:
1. Неразветвленные — в один выводной проток открывается один секреторный отдел.
2. Разветвленные — в один выводной проток открывается несколько секреторных отделов.
IV. По типу секреции:
1. Мерокриновые — при секреции целосность клеток не нарушается.
2. Апокриновые — при секреции частично разрушается (отрывается) верхушка клеток (пр: молочные железы).
3. Голокриновые — при секреции клетка полностью разрушается. Пр: сальные железы кожи.
V. По локализации:
1. Эндоэпителиальные — одноклеточная железа в толще покровного эпителия. Пр.: бокаловидные клетки в эпителие кишечника и воздухонос. путей.
2. Экзоэпителиальные железы — вне эпителия, в подлежащих тканях.
VI. По характеру секрета:
-белковые,слизистые, слизисто-белковые, потовые, сальные, молочные и т.д.
Фазы секреции:
1. Поступление в железистые клетки материалов для синтеза секрета (АК, липиды, минеральные вещ-ва и т.д.).
2. Синтез (в ЭПС) и накопление в железистых клетках секрета.
3. Выделение секрета.

Регенерация железистого эпителия — происходит путем деления малодифференцированных клеток. Отдельные железы (слюнные железы, поджелудочная железа) стволовых клеток не имеют и в них происходит внутриклеточная регенерация — т.е. обновление изношенных органоидов.

27-31


КЛАССИФИКАЦИЯ ТВС:


I.   Кровь и лимфа (ТВС выполняющие трофическую и защитную функцию).
II. Собственно-соединительные ткани (выполняют опорно-механичекую, трофическую и защитную функции):
1. Волокнистые соединительные ткани: а) рыхлая

б) плотная: (оформленная и неоформленная)


2. Соединительные ткани со специальными свойствами: а) ретикулярная ткань;
б) жировая ткань;
в) слизисто-студенистая ткань;
г) пигментная ткань;
д) эндотелий.
III. Скелетные ткани (выполняют опорно-механическую функцию):
1. Хрящевые ткани: а) гиалиновый хрящ;
б) эластический хрящ;
в) волокнистыйхрящ
2. Костные ткани: а) тонковолокнистая

б) грубо-волокнистая



К Р О В Ь.



функция крови:
1. Трофические (доставка к тканям пит. веществ).
2. Защитная (фагоцитоз, иммунная защита).
3. Газообмен, т.е. дыхательная функция.
4. Гомеостатическая функция.
5. Интегративная функция (транспорт гормонов и биологически активных веществ).

Кровь состоит из клеток (форменных элементов) и межклеточного вещества (плазмы). Внорме соотношение объема плазмы и форменных элементов (гематогкрит) составляет 60%¸40%. Общий объем крови составляет ~7% от веса тела (~ 5 л у взрослого).


Плазма состоит на 90% из воды, 9% из органических (6% из них белки — альбумины, глобулины, фибриноген и протромбин) и 1% из неорганических веществ. РН плазмы ~7,36.


Форменным элемены: Количество форменных элементов в единице объема крови называется гемаграммой:
Эритроциты: у мужчин 3,9-5,5х1012/л, у женщин 3,7.-5,0х1012
Лейкоциты  4-9х109/л (лейкоцитоз-выше нормы, и лекопения-ниже нормы)

Тромбоциты  200-400х109/л.



КЛАССИФИКАЦИЯ ТВС:


I.   Кровь и лимфа (ТВС выполняющие трофическую и защитную функцию).
II. Собственно-соединительные ткани (выполняют опорно-механичекую, трофическую и защитную функции):
1. Волокнистые соединительные ткани: а) рыхлая

б) плотная: (оформленная и неоформленная)


2. Соединительные ткани со специальными свойствами: а) ретикулярная ткань;
б) жировая ткань;
в) слизисто-студенистая ткань;
г) пигментная ткань;
д) эндотелий.
III. Скелетные ткани (выполняют опорно-механическую функцию):
1. Хрящевые ткани: а) гиалиновый хрящ;
б) эластический хрящ;
в) волокнистыйхрящ
2. Костные ткани: а) тонковолокнистая

б) грубо-волокнистая


Эритроциты — самые многочисленные клетки крови: В момент рождения содержание эритроцитов у новорожденных около 5х1012/л, в последующем показатель снижается и к 3-6 месячному становится ниже нормы — т.е., наступает «физиологическая анемия». В последующем количество эритроцитов у ребенка нормализируется.
Эритроциты — безъядерные клетки, в цитоплазме содержат железосодержащий пигмент (гем) связанный белком (глобин) — гемоглобин, кот. связывает О2 или СО2. Функция эритроцитов — обеспечение газообмена.
Кроме того эритроциты могут адсорбировать и транспортировать на своей поверхности различные вещества (АК, антигены, антитела, лекарственные вещества, токсины) , благодаря амфотерным свойствам гемоглобина эритроциты участвуют в поддержании РН крови.


Атипичные формы эритроцитов. У здорового человека в крови может встречаться до 10 штук на 1000 клеток (‰):
1. Эхиноцит («волосатая клетка») — клетка с тонкими короткими выростами.
2. Акантоцит — клетка с грубыми толстыми шипиками на поверхности.
3. Мишеневидный эритроцит — клетка с утолщением в центре.
4. Планоцит — клетка с плоскопараллельными поверхностями.
5. Сфероцит — клетка шарообразной формы.
Увеличение атипичных форм эритроцитов больше 10‰ называется пойкилоцитозом.

У здорового человека около 75% эритроцитов имеют диаметр 7-8 мкм (нормоциты), по 12% меньше 7мкм (микроциты) и больше 8 мкм (макроциты). Нарушение данного соотношения называется анизоцитозом и может быть по типу микроцитоза или макроцитоза.


По степени зрелости среди эритроцитов различают зрелые эритроциты и ретикулоциты.

Ретикулоциты — это только что вышедшие из красного костного мозга эритроциты; в цитоплазме имеют остатки органоидов.

Ретикулоциты в течении 1 суток после выхода из красного костного мозга дозревают, теряют остатки органоидов и превращаются в зрелые эритроциты. Эритроциты образуются в красном костном мозге, функционируют в кровеносных сосудах, в среднем живут около 120 суток, стареющие и поврежденные эритроциты разрушаются в селезенке. Железо гемоглобина погибших эритроцитов доставляется моноцитами в красный костный мозг и повторно используется в новых эритроцитах.

Лейкоциты — белые кровяные тельца, в отличие от эритроцитов свои функции выполняют в тканях, передвигаться при помощи псевдоподий. У новорожденного количество лейкоцитов составляет около 20х109/л, в последующем постепенно снижается.

Среди лейкоцитов различают: гранулоциты (зернистые лейкоциты) и агранулоциты (незернистые лейкоциты).


В зависимости от какой краской окрашиваются гранулы цитоплазмы, гранулоциты делятся на эозинофильные, базофильные и нейтрофильные.

Нейтрофильные гранулоциты —сод. гранулы , кот. представляют собой лизосомы, содержащие полный набор протеолитических ферментов. Функция нейтрофилов — защита путем фагоцитоза и переваривания микроорганизмов, инородных частиц, продуктов распада тканей. Поэтому нейтрофилов еще называют микрофагами. Гранулы воспринимаюти кислые и основные красители
Эозинофильные гранулоциты — лейкоциты с окрашивающиеся кислой краской эозином гранулами. В гранулах содержатся гидролитические ферменты и гистаминаза. Функции: участие в аллергических реакциях организма путем фагоцитоза связанных антителами антигенов и разрушения ферментом гистаминазой избытка медиатра аллергических реакций — гистамина.
Базофильные гранулоциты — лейкоциты с окрашивающиеся основными красителями гранулами. В гранулах содержится медиатор аллергических реакций — гистамин, а также противосвертывающее вещество — гепарин. Функции: участвуют при аллергических реакциях организма выделяя медиатр — гистамин (повышает проницаемость стенок кровеносных сосудов, тем самым облегчает выход остальных лейкоцитов из кровеносных сосудов в ткани), снижают свертываемость крови вырабатывая гепарин.
К незернистым лейкоцитам (агранулоцитам) относятся моноциты и лимфоциты. (иногда могут содержать одиночные гранулы)
По структуре ядра среди гранулоцитов различают:
1. Юные — ядро бобовидное, хроматин рыхлый (светлый), т.е. слабокондицированный.
2. Палочкоядерные — ядро палочкообразное, хроматин уплотнен (темный).
3. Сегментоядерные — ядро сост. Из сегментов, хроматин темный, т.е. сильно конденсированный.
Эти 3 разновидности являются одними и теми же клетками в разной степени зрелости — т.е. из красного костного мозга гранулоцит выходит в виде юной клетки, сначала превращается в палочкоядерную, а затем в сегментоядерную.

Лимфоциты - Классификация лимфоцитов по размерам (крупные, средние, мелкие) применяется редко, чаще используется функциональная классификация:
1. Тимусзависимые (Т-лимфоциты) составляют 70-75% всех лимфоцитов и включают следующие субпопуляции:

Т-киллеры (убийцы) — обеспечивают клеточный иммунитет, т.е. уничтожают микроорганизмы, а также мутантные клетки (опухолевые); они распознают и контактируют с антигеном. После отходят от чужеродной клетки, но оставляют на поверхности этой клетки небольшой фрагмент своей цитолеммы — на этом участке резко повышается проницемость цитолеммы чужеродной клетки для ионов Na и они начинают поступать в клетку, вслед за натрием в клетку поступает и вода — в результате чужеродная клетка разбухает и лопается, клетка погибает.
Т-хелперы (помощники) — участвуют в гуморальном иммунитете: идентифицируют «свое» или «чужое», посылают предварительный химический сигнал. В-лимфоцитам  о поступлении в организм антигена, «списывают» информацию с поступившего антигена и через макрофагов передают ее В-лимфоцитам;
Т-супрессоры (подавители) — подавляют чрезмерную пролиферацию В-лимфоцитов при поступлении в организм антигена.
2. Бурсазависимые лимфоциты (В-лимфоциты) — Обеспечивают гуморальный иммунитет — после получения от Т-хелперов индуктора иммуногенеза, а от макрофагов переботанную информацию о поступившем в организм антигене В-лимфоциты начинают пролиферацию (интенсивность деления контролируется Т-супрессорами) , после чего дифференцируются в плазмоциты и начинают вырабатывать специфические антитела (гаммаглобулины) против антигена.

Моноциты — крупные лейкоциты, диаметром 12-15 и более мкм. Ядро несегментировано, бобовидной формы с умеренно конденсированным хроматином. Цитоплазма пепельно- серого цвета, может содержать одиночные азурофильные гранулы. Хорошо выражены лизосомы, много митохондрий. Клетка активно передвигается при помощи псевдоподий. В норме содержание в крови 6-8%.

Функции:защитная путем фагоцитоза микроорганизмов, инородных частиц и продуктов распада собственных тканей. Выходя из кровеносных сосудов в ткани моноциты превращаются в макрофаги .
участие в гуморальном иммунитете — получают от Т-хелперов информацию об антигене и после переработки передают ее В-лимфоцитам;
вырабатывают противовирусный белок интерферон и противомикробный белок лизоцим;
вырабатывают КСФ (колониестимулирующий фактор), регулирующий гранулоцитопоэз.


Лейкоцитарная формула — процентное соотношение разновидностей лейкоцитов, считается на 200 лейкоцитов:
Нейтрофилы:   - юные    0-1%
- палочкоядерные 1-5%
- сегментоядерные 60-65%
Эозинофилы      3-5%
Базофилы          0-1%
Моноциты        6-8%
Лимфоциты      20-40%

Лимфоциты и нейтрофилы образуют 2 «перекреcта»:

К моменту рождения содержание нейтрофилов и лимфоцитов 65% и 25% ,

На 4-й день жизни составляют по 45% (1-й «перекрест»);

К 2 годам содержание нейтрофилов снижается до 25%, а лимфоцитов — повышается до 45%.

К 4-м годам они опять составляют по 45% (2-й «перекрест») и к моменту полового созревания показатели нормализируются.



Кровяные пластинки — это мелкие фрагменты мегакариоцитов (находятся в красном костном мозге). в центре находятся гранулы. содержат тромбопластические факторы свертываемости крови и обеспечивают свертывание. В норме содержание кровяных пластинок 200-400х109/л. Снижение показателя приводит к гемофилии (кровь не сворачивается) ,а повышение — к тромбозам сосудов.

32-34


I. Рыхлая неоформленная волокнистая соединительная ткань (рвст)-собственная вст (клетчатка)- окружает кровеносные и лимфо- сосуды, нах. под баз.мембраной эпителия, образует перегородки внутри паренхиматозных органов, образует слои в оболочках полых органов.
В эмбриональном периоде рвст образуется из мезенхимы.

Рвст состоит из клеток и межкл. вещ-ва, причем их соотношение примерно одинаково.




Клетки Рвст очень разнообразны:

- клетки фибробластического дифферона (стволовая и полустволовая клетка, малоспециализированные и дифференцированный фибробласты, фиброцит, миофибробласт, фиброкласт — это одни и те же клетки в разных «возрастах».),

- макрофаг,

-тучная клетка,

-плазмоцит,

-адвентициальная клетка,

-перицит,

-липоцит,

-меланоцит,

-лейкоциты,



-ретикулярная клетка.

Клетки фибробластического дифферона

Стволовые и полустволовые клетки — это малочисленные, резервные клетки, редко делятся.

Малоспециализированный фибробласт- активно делится митозом; в дальнейшем превращаются в дифференцированные фибробласты.

Дифференцированные фибробласты —самые активные клетки: синтезируют белки волокон (эластин, коллаген) и органичекие компоненты основного вещества (гликозамингликаны, протеогликаны). В ядре: четко выраженные ядрышки; преобладает эухроматин; в цитоплазме: хорошо выражен белоксинтезирующий аппарат (ЭПС гранулярный, пластинчатый комплекс, митохондрии).

Фиброцит — зрелая и стареющая клетка данного ряда.Им присущи все признаки дифференцированных фибробластов, выраженные в меньшей степени.
Фибробласты самые многочисленные клетки (до 75% всех клеток) и вырабатывают межкл. в-во.

Фиброкласт — клетка с набором гидролитических ферментов, разрушает межкл. вещ-во.

Миофибробласт — клетка содержащая сократительные акто-миозиновые белки. Принимают участие при заживлении ран, сближая края раны.
Макрофаги - (15% всех клеток рвст). Образуются из моноцитов крови. Способны активно передвигаться. Хорошо выражены лизосомы и митохондрии. Функции: защитная-фагоцитоз, микроорганизмов, продуктов распада тканей; участие в гуморальном иммунитете; выработка антимикробного белка лизоцима и антивирусного белка интерферона.
Тучная клетка — (10% всех клеток рвст). Располагаются вокруг кровеносных сосудов. В цитоплазме много гранул, содержащие гепарин и гистамин. Функции: выделяя гистамин участвуют в регуляции проницаемости межкл. вещ-ва рвст и стенки кровеносных сосудов, гепарин — для регуляции свертываемости крови.
Плазмоциты — образуются из В-лимфоцитов. Сходны с лимфоцитами. Ядро располагается эксцентрично; гетерохроматин располагается в виде пирамид обращенных к центру вершиной, отграничанных полосками эухроматина — поэтому ядро плазмоцита срванивают «колесом со спицами». Хорошо выражен белок синтезирующий аппарат: ЭПС гранулярный, пластинчатый комплекс и митохондрии. D~7-10 мкм. Функция: Вырабатывают специфические антитела (g-глобулины).
Лейкоциты.
Липоциты (жировая клетка). Различают белые и бурые жировые клетки:
1. Белые липоциты —с узкой полоской цитоплазмы вокруг одной большой капельки жира в центре. Органоидов мало.  Функция: запасают жир (энергетический материал и вода).
2. Бурые липоциты —ядро нах. в центре. По всей цитоплазме разбросаны мелких жировых капелек. Много митохондрий с железосодержащим окислительным ферментом цитохромоксидазой (придает бурый цвет). Функция: бурые липоциты не накапливают жир, а «сжигают» его в митохондриях, а освободившееся тепло идет на согревание крови в капиллярах (уч. в терморегуляции)
Адвентициальные клетки — резервные, малодифференцированные клетки, нах. рядом с кр. сосудами. Могут дифференцироваться в др. клетки.
Перициты — нах. в толще баз. мембраны капилляров; участвуют в регуляции просвета гемокапилляров .
Меланоциты — отростчатые клетки с включениями пигмента меланина. Функция: защита от УФЛ.

Межклеточное вещ-во рвст сост. из основного вещ-ва и волокон.
1. Основное вещество —гелеобразная масса из макромолекул полисахаридов, связанных с тканевой жидкостью.

К полисахаридам относятся:

-сульфатированные гликозаминогликаны  (протеогликаны: гепаринсульфат и хондроэтинсульфат в комплексе с белками).

- несульфатированные гликозаминогликаны (гиалуроновая к.).


2. Волокна — коллагеновые, эластические и ретикулярные волокна.
1) Коллагеновые волокна — более толстые, извитые, состоят из белка коллагена, имеют исчерченность, Окрашивающиеся кислыми красками, Не растягиваются, очень прочны (6 кг/мм2). Функция — обеспечивают мех. прочность рвст.
2) Ретикулярные волокна —разновидность (незрелые) коллагеновых волокон, сильно разветвляясь образуют петлистую сеть. Встречаются в вокруг кр. сосудов. Выявляются импрегнацией серебром.
3) Эластические волокна — тонкие, менее прочные, очень эластичные сост. из белка эластина. Окрашиваются орсеином. Функция: придают рвст эластичность.

Регенерация рвст.: РВСТ хорошо регенерирует и участвует при восполнении поврежденного органа. Дефект органа восполняется соединительнотканным рубцом. Регенерация рвст происходит за счет стволовых клеток фибробластического дифферона и малодифференцированных клеток. Фибробласты размножаются и нач. вырабатывать компоненты межкл. вещ-ва.

Функции рвст:
1. Трофическая: обмен вещ-тв м/у кровью и тканями органа.
2. Защитная: обусловлена наличием в рвст макрофагов, плазмоцитов и лейкоцитов.
3. Опорно-механическая.
4. Пластическая— уч. в регенерации органов после повреждений.


ПЛОТНАЯ ВОЛОКНИСТАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ (ПВСТ):

Св-ва:
- преобладание межкл. вещ-ва над клетками,

в межкл. вещ-ве коллагеновые волокна преобладают над основным вещ-вом и располагаются очень плотно.

-Клетки ПВСТ представлены в основном фибробластами и фиброцитами, но встречаются и макрофаги, тучные клетки, плазмоциты, малодифференцированные клетки и т.д.
По расположению волокон ПВСТ делятся на:

- оформленную- волокна располагаются упорядоченно — параллельно. (сухожилия, связки, апоневрозы, фасции)

-неоформленную - волокна располагаются беспорядочно. (сетчатый слой дермы, капсулы паренхиматозных органов) .
Регенерация ПВСТ происходит за счет митоза малоспециализированных  фибробластов и выработки ими межкл. вещ-ва (коллагеновых волокон) после дифференцировки в зрелые фибробласты.

Функция: — обеспеч. мех. прочность.

СОЕДИНИТЕЛЬНЫЕ ТКАНИ СО СПЕЦИАЛЬНЫМИ СВОЙСТВАМИ
К соединительным тканям со специальными свойствами (СТСС) относятся:
1. Ретикулярная ткань.
2. Жировая ткань.
3. Пигментная ткань.
4. Слизисто-студенистая ткань.
5. Эндотелий.
В эмбриогенезе все соединительные ткани СТСС образуются из мезенхимы.


1. Ретикулярная ткань — составляет основу кроветворных органов. Сост. из ретикулярных клеток и межкл. вещ-ва, состоящего из основного вещ-ва и ретикулярных волокон.

Ретикулярные клетки — крупные, соединяясь м/у собой отростками образуют петлистую сеть. Ретикулярные волокна также образуют сеть. Отсюда и название ткани –«ретикулярная (сетчатая) ткань». Ретикулярные клетки способны к фагоцитозу. Ретикулярная ткань регенерирует за счет деления ретикулярных клеток и выработки ими межкл. вещ-ва.



Функции: опорно-механическая (каркас для созревающих кл. крови); трофическая (питание созревающих кл. крови); фагоцитоз погибших клеток, антигенов; создают специфическое микроокружение, определяет направление дифференцировки кроветворных кл.
2. Жировая ткань — это скопление жировых клеток (см выше). Различают:

-белый жир (скопление белых жировых кл.) — имеется в подкожной жировой клетчатке, в сальниках, вокруг паренхиматозных и полых органов; Функции: запас энергетического материала и воды; мех. защита; (теплоизоляция).

-бурый жир (скопление бурых жировых кл.) — имеется у животных впадающих в спячку, у новорожденных в раннем возрасте. Функци: терморегуляция— жир сграет в мтх липоцитов, а освободившееся тепло идет на согревание крови в капиллярах.
3. Пигментная ткань — скопление меланоцитов. Имеется в определенных участках кожи (вокруг сосков), в сетчатке и радужке глаза,  и т.д. Функция: защита от избытка света, УФЛ.
4. Слизисто-студенистая ткань — имеется только у эмбриона (под кожей, в пупочном канатике). В этой ткани очень мало клеток (мукоциты), преобладает межкл. вещ-во, а в нем — преобладает студенистое основное вещ-во, богатое гиалуроновой к. Функция: мех. защита нижележащих тканей, препятствует пережатию кр. сосудов пуповины.
5. Эндотелий — по строению похож мезотелию:
а) источник развития — мезенхима;
б) эндотелий внутренней поверхностью контактирует кровью, наружной — рвст,

Эндотелий выстилает внутреннюю поверхность кровеносных и лимфа- сосудов, камеры сердца. Эндотелий сост. из уплощенных клеток (толщина 0,2-0,3 мкм). Имеют одиночные микроворсинки. Располагаются на баз. мембране сплошным пластом, м/у кл. могут оставаться щели. Регенерация за счет митоза эндотелиоцитов. Функция: обмен м/у кровью и окруж. тканями.



35-37

ХРЯЩЕВАЯ ТКАНЬ: .– сост. из клеток и межкл. вещ-ва. (классификация):
а) гиалиновый хрящ;
б) эластический хрящ;
в) коллагеново-волокнистый хрящ

Клетки хрящевых тканей представлены хондробластическим дифференом:
1. Стволовая и Полустволовая клетка
3. Хондробласт
4. Хондроцит
5. Хондрокласт


Стволовая и полустволовая клетка — малодифференцированные клетки, локализуются вокруг сосудов в надхрящнице. Дифференцируясь превращаются в хондробласты и хондроциты, т.е. необходимы для регенерации.
Хондробласты — молодые клетки, располагаются в глубоких слоях надхрящницы по одиночке. Хорошо выражены белоксинтезирующий комплекс органоидов т.к. основная функция — выработка орган. части межкл. вещ-ва: белки коллаген и эластин. В целом, х/бласты обеспечивают поверхностный рост хряща со стороны надхрящницы. В последующем превращаются в хондроциты.
Хондроциты — основные клетки хрящевой ткани, располагаются в более глубоких слоях хряща в — лакунах. Могут делиться митозом, при этом дочерние клетки не расходятся— образуют изогенные группы. У каждой клетки своя капсула. Хорошо выражены белоксинтезирующий аппарат, т.к. основная функция — выработка органической части межкл. вещ-ва хрящевой ткани. Интерстициальный (внутренний) рост хряща за счет деления х/цитов.
Хондрокласты – сод. много лизосом и мтх. Функция - разрушение поврежденных или изношенных участков хряща. (разрушают межкл. вещ-во)

Межкл. вещ-во хрящевой ткани содержит коллагеновые, эластические волокна и основное вещ-во. Основное вещ-во сост. из тканевой жидкости и органич. вещ-тв:
- ГАГ (хондроэтинсульфаты, кератосульфаты, гиалуроновая кислота);
- ПГ (белок +ГАГ);
- липиды.
Межкл. вещ-во обладает высокой гидрофильностью, содержание воды до 75% массы хряща, это обуславливает высокую плотность хряща. Хрящевые ткани не имеют кровеносных сосудов, питание осуществляется диффузно за счет сосудов надхрящницы.
Надхрящница — соед. ткань, покрывающий поверхность хряща. В надхрящнице выделяют наружный фиброзный (из плотной неоформленной сдт с большим количеством кр. сосудов) и внутренний клеточный слой, содержащее большое количество стволовых, полустволовых клеток и ф/бластов.


Гиалиновый хрящ — покрывает суставные пов. костей, содержится в воздухоносных путях. Коллагеновые волокна под микроскопом не видимы т.к. их коэффициент преломления одинаковый с основным веществом.
Эластический хрящ имеется в ушной раковине, надгортаннике, рожковидных и клиновидных хрящах. В межкл. вещ-ве кроме коллагеновых волокон имеется много эластических волокон, что придает эластичность хрящу.
Волокнистый хрящ расположен в местах прикрепления сухожилий к костям и хрящам, в симфизе и межпозвоночных дисках. В межкл. вещ-ве много коллагеновых волокон, кот. образуют толстые пучки. Х/циты лежат по одиночке вдоль волокон, не образуя изогенные группы.

Функции хрящевой и костной тканей:
1.Опорно-механическая

2. защитная (механическая защита органов грудной и брюшной полости);


3. участие в минеральном обмене (Са2+)


Развитие хрящевых тканей. (из мезенхимы) 3 стадии:
I стадия — образование хондрогенных островков. В местах где образуется хрящ, мезенхимные клетки теряют отростки, размножаются и образуют плотные скопления — хондрогенные островки.
II стадия — формирование первичного хряща. Клетки хондрогенных островков дифференцируются в хондробласты и начинают сентизировать белки колагеновых волокон. Так формируется I хрящевая ткань.
III стадия — дифференцировка хрящевой ткани: хондробласты кроме коллагеновых волокон синтезируют ГАГ и ПГ и формируется надхрящница.

Костные ткани:
а) тонковолокнистая (пластинчатая) костная ткань;
б) ретикулофиброзная (грубоволокнистая) костная ткань.

Стволовые клетки — резервные клетки, располагаются в надкостнице.

Полустволовые клетки — клетки с развитым синтетическим аппаратом.
Остеобласты — образуют костную ткань. Нах. в надкостнице. Хорошо выпажены гранулярный ЭПС, пластинчатый комплекс и мтх.

Функция: синтез белков оссеиновых волокон и оссеомукоид. Остеобласты созревают и превращаются в остеоциты.


Остеоциты — отростчатые клетки, лежат в костных лакунах. D~ 50 мкм. Органоиды развиты слабо (гранулярный ЭПС, ПК и митохондрии). Не делятся. Функция: принимают участие в регенерации костной ткани, вырабатывают орган. часть межкл. вещ-ва. На остеобласты и остеоциты стимулирующее влияние оказывает гормон щитовидной железы кальцитонин — усиливается синтез орган. части межкл. вещ-ва и усиливается отложение Ca.
Остеокласты — это крупные клетки, D~ 100 мкм. Являются специализированными макрофагами, образуются путем слияния многих макрофагов гематогенного происхождения, поэтому много ядер. В остеокластах хорошо выражены лизосомы и митохондрии. Функция — разрушение костной ткани. Остеокласты выделяют СО2 и фермент карбоангидразу; СО2 связывается Н2О и образуется угольная к.-Н2СО3; кот. реагируя растворяет соли Ca, растворенный Ca вымывается в кровь. Органическая часть межкл. вещ-а лизируется протеолитическими ферментами лизосом остеокластов. Функция остеокластов стимулируется паратириокальцитонином паращитовидной железы.

Межклеточное вещество костной ткани сост.:
1. Неорганические соединения (фосфорнокислые и углекислые соли Са) — составляют 70% межкл. вещ-ва.
2. Органическая часть представлена коллагеновыми (оссеиновыми) волокнами и склеивающей массой (оссеомукоид) — составляет 30%.
Соотношение органическрой и неорганической части зависит от возраста: у детей органической части больше 30%, а неорганической части меньше 70%, поэтому у них кости менее прочные, но более гибкие (не ломкие); в пожилом возрасте, наоборот, доля неорганической части увеличивается, а органической части уменьшается, поэтому кости более твердыми, но ломкими.

В отличии от хрящевых тканей в костной ткани кровеносных сосудов больше.


Кость покрыта надкостницей. В ней различают наружный (волокнистый) и внутренний (клеточный) слой. В надкостнице очень много кровеносных сосудов, стволовых и полустволовых остеогенных клеток, остеобластов. Функция надкостницы — питание и регенерация кости.
Отличие тонковолокнистой и ретикулофиброзной кости заключается в расположении оссеиновых волокон:

1. Тонковолокнистая костная ткань оссеиновые волокна располагаются в одной плоскости параллельно друг другу и склеиваются оссеомукоидом и на них откладываются соли Ca — т.е. формируют пластинки, поэтому по другому называется пластинчатой костной тканью. Направление оссеиновых волокон в 2-х соседних пластинках взаимоперпендикулярны, что придает особую прочность. М/у костными пластинками в лакунах лежат остеоциты. В трубчатой кости различают:
1) Надкостница (периост).
2) Наружные общие (генеральные) пластинки — окружают кость, а м/у ними — остеоциты.
3) Слой остеонов. Остеон (Гаверсова система) —система из 5-20 цилиндров из костных пластинок, концентрически вставленнве друг в друга. В центре остеона проходит кровеносный капилляр. Промежутки м/у соседними остеонами заполнены вставочными пластинками — остатки разрушающихся остеонов.
4) Внутренние общие (генеральные) пластинки (аналогичны с наружными).
5) Эндоост — аналогичен с периостом.

Регенерация и рост кости в толщину осуществляется за счет периоста и эндооста.
Все трубчатые, и многие плоские кости являются тонковолокнистыми.

2. Ретикулофиброзная костная ткань имеется в черепных швах, местах прикрепления сухожилий к костям, в эмбриональном периоде вначале на месте хрящевого макета будущей кости, кот. потом становится тонковолокнистой.

Грубоволокнистая (ретикулофиброзная) кость. Осеиновые волокна располагаются произвольно, неупорядочонно, склеиваются оссеомукоидом и на них откладываются соли Ca. Остеобласты и остеоциты также располагаются в лакунах. Менее прочная.образуется также при сращении костей после перелома, т.е. в костной мозоле.

РАЗВИТИЕ КОСТНОЙ ТКАНИ (из мезенхимы) может протекать 2 способами:
I.   Прямой остеогенез — характерен для плоских костей и костей черепа. На месте будущей кости, клетки мезенхимы располагаясь более плотно, образуют остеогенный островок; клетки этих островков дифференцируются в остеобласты и остеоциты, кот. вырабатывают органическую часть межкл. вещ-ва (оссеиновые волокна и оссеомукоид). В них откладываются соли Ca, (кальцификация), в результате образуются плоские кости из ретикулофиброзной костной ткани, которая по мере увеличения физ. нагрузки перестраивается в токоволокнистую костную ткань.
II. Непрямой остеогенез (развитие кости на месте хряща) — характерно для трубчатых костей. На месте будущей кости формируется модель будущей кости из гиалинового хряща с надхрящницей. Окостенение нач. с диафиза. Малодифференцированные клетки надхрящницы диафиза превращаются в остеобласты, они вырабатывая межкл. вещ-во, образуют вокруг диафиза костную манжетку из ретикулофиброзной кости, кот. затем перестраивается в пластинчатую кост. тк. (т.е происходит перихондральне окостенение). Костная манжетка нарушает питания хряща в диафизах, и начинаются дистрофические процессы и обызвествление хряща. В эти участки со строны костной манжетки начинают врастать кровносные сосуды с остеобластами и остеокластами. Остеобласты и остециты начинают формировать костную ткань, а остеокласты разрушают в центре диафиза хр. Ткань и образуют костномозговую полость. Затем окостеневают эпифизы. М/у диафизом и эпифизом сохраняется прослойка хрящевой ткани, за счет кот. рост кости в длину продолжается до 20-21 года.

38.


НЕРВНАЯ ТКАНЬ – основной элемент нервной сстемы. Она способна воспринимать раздражение, переводить их в импульсы, передавать их, анализировать и синтезировать информацию.
Источник развития НТ –нейроэктодерма.

Из дорсальной эктодермы образуется нервная трубка и ганглиозная пластинка. (Они состоят из медулобластов, делящиеся митозом).



Медулобласты дифференцируются на:

1) Нейробластичекий дифферон (нейробласт->молодые нейроциты->зрелые нейроциты)

2)Спонгиобластический дифферон (спонгиобласты->глиобласты->глиоциты)

Нейробласты – имеют 1 отросток –аксон, и нейрофибрилл. В цитоплазме имеют ЭПС (грнулярный), Комплекс Гольджи, митохондрии. Они не способны к делению.

Молодые нейроциты – растут и появляются дендриты, синапсы, в цитоплазме базафильное вещ-во.

Зрелые нейроциты – имеют окончательную форму, и больше синапсов.
Классификация нейроцитов (нейронов):

1) по функции:

- Афферентные (чувствительные)

- Ассоциативные (вставочные)

- Эффекторные (двигательные / секреторные)

2) по строению: (кол-ву отростков)

- Униполярные (1 отросток-оксон)

-Биполярные (аксон и дендрит):

а - истинные (аксон и дендрит отходят отдельно)

б -псевдоуниполярные (аксон и дендрит отходят вместе)

-Мультиполярные (3 и более отростков)
НЕЙРОЦИТЫ. Размеры клеток широко варьирует: d=5-130 мкм, а отростки могут достигать длины до 1,5 метра.

По форме бывают звездчатые, пирамидные, веретиновидные, паукообразные и др. разновидности нейроцитов.


Аксон и дендрит — это отростки клетки, покрытые цитолеммой; внутри содержат нейрофиламенты, нейротрубочки, мтх.

Аксон (только 1-длинный; проводит импульс от тела нейроцита).

Дендрит (1 или несколько, сильно разветвляются; проводят импульс к телу нейроцита).
Нейронная теория - утверждает, НС построена из обособленных, контактирующих между собой клеток — нейронов, сохраняющих генетическую, морфологическую и функциональную индивидуальность. Теория рассматривает нервную деятельность как результат взаимодействия совокупности нейронов.
Рефлекторная дуга — путь, проходимый нервными импульсами при осуществлении рефлекса.Она состоит из:

-Рецептора — воспринимающее раздражение;

-Афферентного звена — передают импульсы от чувствит. нервных окончаний в ЦНС;

-Нервный центр

-Эфферентного звена — передают импульс от нервного центра к эффектору.

-Эффектора — исполнительный орган.


НЕРВНОЕ ВОЛОКНО — это аксон или дендрит окруженный леммоцитом .

Различают безмиелиновый (безмякотный) и миелиновое (мякотное) нервное волокно.


1. В безмиелиновом нервном волокне осевой цилиндр продавливается в цитолемму леммоцита до центра клетки; при этом осевой цилиндр отделен от цитоплазмы цитолеммой леммоцита и подвешан на дупликатуре этой мембраны. В продольном срезе безмиелинового волокна осевой цилиндр покрыт цепочкой леммоцитов. В каждую цепочку леммоцитов погружаются одновременно с разных сторон несколько осевых цилиндров и образуется так называемое «безмиелиновое волокно кабельного типа». Безмиелиновые нервные волокна имеются в постганглионарных волокнах эфферентного звена рефлекторной дуги ВНС. Нервный импуль по безмиелиновому нервному волокну проводится со скоростью 1-2 м/сек.
2. Начальный этап формирования миелинового волокна аналогичен безмиелиновому волокну. В дальнейшем в миелиновом нервном волокне мезаксон сильно удлинняется и наматывается на осевой цилиндр; цитоплазма леммоцита образует поверхностный слой волокна, ядро оттесняется на периферию. В продольном срезе представляет цепочку леммоцитов, «нанизанных» на осевой цилиндр; границы м/у соседними леммоцитами в волокне называются перехватами (перехваты Ранвье). Большинство нервных волокон в нервной системе по строению являются миелиновыми. Нервный импуль в миелиновом нервном волокне проводится «прыжками» от перехвата к перехвату со скоростью до 120 м/сек.
Синапсы —спец. контакты, для передачи нервных импульсов от нейроцита к другой клетке.
Классификация синапсов:

В зависимости от того м/у какими структурами нах.синапс:
- аксосоматический;
- аксодендритический;
- аксоаксональный;
- соматосоматический;
- дендродендритический;
- нервно-мышечный;
- нейроваскулярный.

По механизму передачи импульсов:
- нейрохимические (при помощи медиатров: холин-, адрен-, серотонин-, дофамин-, пептид- эргические;
- электротонические (щелевой или плотный контакт);
- смешанные.
По конечному эффекту:
- тормозные;
- возбуждающие.
НЕЙРОГЛИОЦИТЫ — вспомогательные клетки НТ.

А. МАКРОГЛИОЦИТЫ.
I.   Эпиндимоциты — выстилают спинно-мозговой канал, мозговые желудочки. По строению напоминают эпителий. Клетки плотно

прилегают друг к другу, образуя сплошной пласт. Иногда могут иметь мерцательные реснички. Другой конец клеток имеет длинный

отросток, пронизывающий всю толщу мозга. Функция: разграничительная (ликвор и мозговая ткань), уч. в образовании ликвора.
II. Астроциты — отросчатые клетки, образуют остов спинного и головного мозга. Функция — опорно-механическая
1) плазматические астроциты —с короткими, толстыми отростками (в сером вещ-ве).
2) волокнистые астроциты — с тонкими, длинными отростками (в белом вещ-ве ЦНС)..
III. Олигодендроглиоциты — малоотростчатые глиальные клетки, окружают тела и отростки нейроцитов. Функция: трофика нейроцитов ;

уч. в возбуждении (торможения) нейроцитов; в проведении импульсов по нервным волокнам; регуляция водно-солевого баланса в НС;

участие в рецепции; защитная (изоляция).Разновидности:
1. Глиоциты ЦНС — окружают тела и отростки нейроцитов в ЦНС.
2. Мантийные клетки (сателлиты) окружают тела нейроцитов в спинальных ганглиях.
3. Леммоциты (Шванновские кл) — окружают отростки нейроцитов и входят в сост. безмиелиновых и миелиновых нерв. волокон.
4. Концевые глиоциты — окружают нервные окончания в рецепторах.

Б. МИКРОГЛИОЦИТЫ - отростчатые клеткиспособны к амебоидному движению. Имеют лизосомы и мтх.

Функция: фагоцитоз, поэтому их называют мозговыми макрофагами.

В эмбр. периоде развивабтся— из мезенхимы.
Регенерация нервной ткани: нейроциты являются наиболее высокоспециализированными клетками и поэтому утратили способность к митозу. Физиологическая регенерация (восполнение естественного износа) в нейроцитах протекает по типу «внутриклеточной регенерации» — т.е. клетка не делится, но интенсивно обновляет изношенные органоиды и структуры.
Отсутствие клеточной формы регенерации нейроцитов обуславливает разрастание нейроглии и соединительной ткани на месте повреждения (репаративная регенерация — восстановление после повреждений).
В случае повреждения только отростка нейроцита регенерация возможна. При этом, дистальнее места повреждения осевой цилиндр нервного волокна рассасывается, но леммоциты при этом остаются жизнеспособными. Свободный конец осевого цилиндра выше места повреждения утолщается — образуется «колба роста», и начинает расти со скоростью 1 мм/день вдоль оставшихся леммоцитов. При благоприятных условиях осевой цилиндр достигает бывшего рецепторного или эффекторного концевого аппарата и восстанавливает его.
Для нормальной регенерации волокна необходимо:
1. Своевременная хир. обработка очага повреждения (иссечение нежизнеспособных тканей, кровяных сгустков).
2. Обеспечение контакта центрального и дистального фрагмента в зоне повреждения (наложение шва «конец в конец»).
3. Обеспечение нормального кровоснабжения (сшивание поврежденных кровеносных сосудов, сопровождающих нерв).
4. Раннее назначение дозированной физической нагрузки и массажа поврежденной конечности.
5. Борьба с инфекцией.
Мышечная ткань


Классификация МТ (по Н. Г. Хлопину):
1. Гладкая МТ.
2. Поперечно-полосатая МТ.
1) Поперечно-полосатая МТ соматического типа.
2). Поперечно-полосатая МT целомического (сердечного) типа.
Гладкая МТ (ГМТ) входит в состав мышечных оболочек сосудов, кишечника, мочевыводящих, семявыводящих путей и др. органах.

Гладкомышечная клетка (леомиоцит) - веретеновидной формы клетка, в цитоплазме содержит тонкие (φ 5-8 нм), средние (до 10 нм) и толстые (13-18 нм) миофиламенты. Длина миоцитов колеблется от 20 до 500 мкм, а диаметр составляет 10-20 мкм. Ядро располагается в расширенной центральной части клетки. Хроматин упакован плотно. Клетка окружена оболочкой — миолеммой. Снаружи миолеммы имеется базальная мембрана, к которой прикрепляются коллагеновые и аргирофильные волокна. Леомиоциты собираются в пучки, имеющие продольное и циркулярное направление в органе. Эти пучки иннервируются одним нервом и называются эффекторной сократимой единицей ГМТ.


Гладкая МТ иннервируется вегетативной НС, т.е. не подчиняется воле. Сокращение ГМТ медленное, но малоутомляема.
В эмбр. периоде развивается из мезенхимы. Вначале мезенхимные клетки имеют звездчатую, отросчатую форму, а при дифференцировке в ГМ-клетки приобретают веретеновидную форму; в цитоплазме накапливаются органоиды спецназначения — миофибриллы из актина и миозина.
Регенерация ГМТ:
1.   Митоз миоцитов после дедифференцировки: миоциты утрачивают сократительные белки, исчезают мтх и превращаются в миобласты. Миобласты начинают размножаться, а потом вновь дифференцируются в зрелые леомиоциты.
2.   Возможно образование новых ГМ-клеток из малодифференцированных стволовых клеток фибробластического дифферона рыхлой с.д.т.
Поперечно-полосатая МТ соматического типа (скелетная мускулатура)- В эмбриогенезе развивается из миотомов.   

Мышечное волокно (мион) – морфофункциональная единица ППМТ, является симпластом (огромная масса цитоплазмы, где разбросаны ядра).
Мион включает большое число ядер, саркоплазму. В саркоплазме находятся:
- органоиды спецназначения — миофибриллы
- митохондрии
- Т-система (Т-трубочки, Л-трубочки,  цистерны;)
- включения (особенно гликоген);
Мион окружено оболочкой - сарколеммой и базальной мембраной.
Миофибриллы образуются светлые И-диски (изотропные) из тонких нитей белка актина, и темные А-диски (анизотропные) из толстых нитей белка миозина. По центре темных А-дисков проходит поперечная линия — мезофрагма, а у светлых И-дисков— телофрагма.

В саркоплазме также имеются вспомогательные белки — Тропонин и тропомиозин — они участвуют при обеспечении (поставке) сократительных белков ионами Ca, кот. катализирует взаимодействие актина и миозина.



Саркомер - структурно-функциональная единица миофибрилл - участок м\у двумя соседними телофрагмами. При сокращении м/у актиновыми и миозиновыми протофибриллами при наличии катализатора ионов Ca образуются мостики (акто-миозиновые комплексы) и это обеспечивает скольжение нитей навстречу друг к другу и укорочение саркомеров.
Канальцы саркоплазматического ретикулума располагаются в продольном направлении и образуют Л-трубочки (longentidunalis = продольные); они соединяются трубочками идущими в поперечном направлении в мышечном волокне — Т-трубочками (transversus=поперечно). Л- и Т-трубочки соединяются с цистернами — емкости для ионов Са. В стенках цистерн имеются кальциевые насосы, откачивающие ионы Са++ из саркоплазмы в цистерны. Нервный импульс в моторных бляшках переходит на сарколемму мышечного волокна, дальше по Т-трубочкам волна деполяризации проникает внутрь волокна, распространяется по Л-трубочкам и наконец волна деполяризации проходит по стенке цистерн. В момент прохождения волны деполяризации по мембране цистерны у последней повышается проницаемость для ионов Са++, и Са выбрасывается в саркоплазму и подхватывается вспомогательными белками тропонином и тропомиозином и подносится к акто-миозиновому комплексу и при наличии АТФ происходит сокращение саркомера. Ca-вый насос быстро откачивает Са обратно в цистерны — актомиозиновый комплекс распадается и происходит расслабление мышцы. Поступление нового импульса приводит к повторению всего цикла.


По строению и функциональным особенностям выделяют мышечные волокна:

- I типа (красные м.в.), которые содержат много митохондрий, миоглобина (придает красный цвет), высокую активность фермента сукцинатдегидрогеназы, но мало миофибрилл. Красные м.в. добывают энергию для сокращения путем аэробного оксиления гликогена, т.е. нуждаются в дыхании.

- II типа (белые м.в.) содержат больше миофибрилл и относительно больше гликогена, зато меньше митохондрий и у них низка активность сукцинатдегидрогеназы. Белые м.в. энергию для сокращений получают путем анаэробного окисления гликогена, т.е. в дыхании не нуждаются.
Особо следует отметить так называемые клетки миосателлитоциты (МСЦ). Они располагаются м/у базальной пластинкой и сарколеммой м.волокна.
Регенерация ПП МТ соматического типа осуществляется за счет малодифференцированных элементов — МСЦ. При травме или большой физической нагрузке клетки МСЦ постепенно выходят из состава м.волокна, начинают делиться митозом и формируют популяцию миобластов. В последующем  миобласты сливаясь образовывают миотубулы — симпласт. Миотубулы в цитоплазме накапливают миофибриллы, митохондрии и превращаются в новые мыщечные волокна.

ПП МТ сердечного (целомического)типа — развивается из висцерального листка спланхнатомов (миоэпикардиальной пластинки).

В гистогенезе ПП МТ сердечного типа различают следующие стадии:


1.   Стадия кардиомиобластов.
2.   Стадия кардиопромиоцитов.
3.   Стадия кардиомиоцитов.

Морфофункциональной единицей ПП МТ сердечного типа является кардиомиоцит (КМЦ).



КМЦ — клетка одним в центре ядром, миофибриллы занимают основную часть цитоплазмы, м/у ними большое количество мтх; имеется ЭПС и включения гликогена. КМЦ контактируя друг с другом конец-в конец формируют функциональные мышечные волокна. КМЦ отграничены друг от друга вставочными дисками. Сарколемма сост. из плазмолеммы и базальной мембраны. В отличие от скелетной МТ сердечная МТ камбиальных элементов не имеет. В гистогенезе кардиомиобласты способны митотически делиться и в то же время синтезировать миофибриллярные белки. Рассматривая особенности развития КМЦ следует указать, что в раннем детстве эти клетки после разборки могут вступить в цикл пролиферации с последующей сборкой акто-миозиновых структур. Однако в последующем способность к митотическому делению у КМЦ исчезает. С возрастом в КМЦ происходит накопление включений липофусцина, а размеры уменьшаются.
Разновидности КМЦ:
1.   Сократительные (типичные) — описание смотри выше.
2.   Атипичные (проводящие) — образуют проводящую систему сердца.
3.   Секреторные КМЦ.


Атипичные ( слабо развит миофибриллярный аппарат; мало митохондрий;много включений гликогена) - обеспечивают автоматию сердца, так как часть их, расположенные в синусном узле сердца Р-клетки или водители ритма, способны вырабатывать ритмичные нервные импульсы, вызывающие сокращение типичных КМЦ; поэтому даже после перерезки нервов подходящих к сердцу, миокард продолжает сокращаться своим ритмом. Другая часть атипичных КМЦ  проводят нервные импульсы от водителей ритма и импульсы от симпатических и парасимпатических нервных волокон к КМЦ.
Секреторные КМЦ -  располагаются в предсердиях; имеют секреторные гранулы, в которых содержится натрийуретический фактор (атриопептин) — регулирующий АД. Также они вырабатывают гликопротеины, которые соединяясь с липопротеинами крови препятствуют образованию тромбов в кр. сосудах.


Регенерация ПП МТ сердечного типа.

Репаративная регенерация (после повреждений) — очень плохо выражена, поэтому после повреждений (пр.: инфаркт) сердечная МТ замещается соединительнотканным рубцом.

Физиологическая регенерация (восполнение естественного износа) осуществляется путем внутриклеточной регенерации — КМЦ обновляют свои изношенные органоиды.

ССС
СЕРДЦЕ — центральный орган ССС.

Имеет 3 оболочки: внутренняя — эндокард, средняя (мышечная) — миокард, наружная (серозная) — эпикард.


Эндокард состоит из 5 слоев:
1. Эндотелий на базальной мембране.
2. Подэндотелиальный слой из рыхлой волокнистой сдт.
3. Мышечно-эластический слой (миоциты эластические волокна).
4. Эластически-мышечный слой (миоцитыэластические волокна).
5. Наружный сдт-й слой (рыхлая волокнистая сдт).

Мышечная оболочка (миокард) состоит из кардиомиоцитов 3-х типов: сократительные, проводящие и секреторные.
Эндокард (серозная оболочка) состоит из слоев:
1. Мезотелий на базальной мембране.
2. Поверхностный коллагеновый слой.
3. Слой эластических волокон.
4. Глубокий коллагеновый слой.
5. Глубокий коллагеново-эластический слой.
Сердце закладывается в начале 3-й неделе эмбрионального развития в виде парного зачатка в шейной области из мезенхимы под висцеральным листком спланхнотомов. Из мезенхимы образуются парные тяжи, которые вскоре превращаются в трубочки, кот.дают— эндокард. Участки висцерального листка спланхнотомов дифференцируются впоследствии в миокард и эпикард. По мере развития зародыша 2 закладки сердца оказываются в полости грудной клетки, сближаются и наконец сливаются в одну трубку. Кот. начинает быстро расти в длину и не помещаясь в грудной клетке образует несколько изгибов. И формируется 4-х камерное сердце.


Регенерация ССС. Репаративная регенерация сердца — плохая, дефект замещается сдт рубцом;

физиологическая регенерация — хорошо выражена, за счет внутриклеточной регенерации (обновление изношенных органоидов).



Возрастные изменения ССС. В сосудах в пожилом и старческом возрасте наблюдается утолщение внутренней оболочки, возможны отложения холестерина и солей Са (атеросклеротические бляшки). В средней оболочке сосудов уменьшается содержание миоцитов и эластических волокон, увеличивается количество коллагеновых волокон и кислых мукополисахаридов.
В миокарде сердца после 30 лет увеличивается доля сдт-ой стромы, появляются жировые клетки; начинается преобладание холинэргической иннервации над адренэргической.
Артерии: оболочки:
Внутренняя оболочка состоит из слоев:
1. Эндотелий на баз. мембране.
2. Подэндотелиальный слой — рылая волокнистая сдт.
3. Внутренняя эластическая мембрана — сплетение эластических волокон.

Средняя оболочка содержит гладкомышечные клетки, фибробласты, эластические и коллагеновые волокна.
Наружная адвентициальная оболочка представлена рыхлой волокнистой сдт с сосудами сосудов и нервами сосудов.

Классификация:
1. Артерии эластического типа — (аорта и легочный ствол). В этих сосудах отмечается большой перепад давления при переходе систола — диастола. В средней оболочке из вышеперечисленных компонентов (миоциты, фибробласты, коллагеновые и эластические волокна) преобладают эластические волокна. Эластические волокна образуют эластические мембраны. Благодаря этому стенки не только выдерживает большое давление, но и сглаживает большие перепады давления.
2. Артерии мышечного типа — (все артерии среднего и мелкого калибра). В них происходит падение давления и снижение скорости кровотока. У них в средней оболочке преобладают миоциты над другими структурными. Благодаря этому они поддерживают падающее давление и дальше проталкивают кровь, поэтому их называют «периферическим сердцем».
3. Артерии смешанного типа — крупные артерии отходящие от аорты (сонная и подключичная артерия). Занимают промежуточное положение. В средней оболочке миоциты и эластические волокна представлены ~ одинаково.

Микроциркуляторное русло — звено м/у артериальным и венозным звеном; обмен веществ м/у кровью и тканями.
Состав:
1. Артериолы (включая прекапиллярные).
2. Гемокапилляры.
3. Венулы (включая посткапиллярные).
4. Артериоло-венулярные анастомозы.


Артериолы — сосуды, соединяющие артерии с гемокапиллярами. Сохраняют принцип строения артерий: имеют 3 оболочки, кот. выражены слабо — подэндотелиальный слой внутренней оболочки очень тонкий; средняя оболочка представлена одним слоем миоцитов. По мере увеличения диаметра в средней оболочке количество миоцитов увеличивается, образуется вначале один, затем два и более слоев миоцитов. Благодаря наличию в стенке миоцитов (в прекапиллярных артериолах в виде сфинктера) артериолы регулируют кровенаполнение гемокапилляров, т.е. — интенсивность обмена м/у кровью и тканями органа.
Гемокапилляры. Стенка имеют наименьшую толщину и состоит из 3-х компонентов — эндотелиоциты, базальная мембрана с перицитами. Мышечных элементов в составе стенки не имеется, но их просвет может изменяться в результате изменения давления крови и способности ядер перицитов и эндотелиоцитов к набуханию и сжатию. Различают следующие типы капилляров:
1. Гемокапилляры I типа (соматического типа) — капилляры с непрерывным эндотелием и непрерывной базальной мембраной, диаметр 4-7 мкм. Имеются в скелетной мускулатуре, в коже и слизистых оболочках..
2. Гемокапилляры II типа (фенестрированного или висцерального типа) — базальная мембрана сплошная, в эндотелие имеются фенестры — истонченные участки в цитоплазме эндотелиоцитов. Диаметр 8-12 мкм. Имеются в капиллярных клубочках почки, в кишечнике, в эндокринных железах.
3. Гемокапилляры III типа (синусоидного типа) — базальная мембрана не сплошная, местами отсутствует, а между эндотелиоцитами остаются щели; диаметр 20-30 и более мкм, на протяжении — имеются расширенные и суженные участки. Кровоток в этих капиллярах замедлен. Имеются в печени, органах кроветворения, эндокринных железах.

Гистогематический барьер - барьер между кровью в гемокапиллярах и окружающей тканью, который состоит из эндотелиоцитов и базальной мембраны.

Нервная система

Развитие НС начинается с утолщения дорсальной ЭКТОДЕРМЫ и формированием нервной пластинки, тянущейся вдоль оси тела. В дальнейшем нервная пластинка прогибается и образуется нервный желобок, который смыкаясь превращается в трубку. В последующем она отрывается. При этом из материала зоны прикрепления нервной трубки с эктодермой обособляются парные ганглиозные пластинки (нервные гребни).
Ганглиозные пластинки дифференцируется в:
1. Клетки ганглиозной пластинки – уч. в формировании ядер V, VII, IX, X пар ЧН.
2. Часть клеток мигрирует латерально, и дифференцируются в меланоциты эпидермиса кожи.
3.  Часть клеток мигрирует вентрально между нервной трубкой и сомитами, дифференцируются в нервные ткани ганглиев ВНС и хромофинные клетки корковой части надпочечников.
4. Часть клеток остается на месте ганглиозной пластинки –закладки спинномозговых узлов.

Нервная трубка в момент закладки состоит из 1 слоя— медулобластов, однако вскоре клетки начинают пролиферацию и нервная трубка становится многослойной. При этом базальный слой медулобластов (герменативные или вентрикулярные клетки) располагается на границе с каналом нервной трубки, часть кот. вытесняется в вышележащие слои.



СПИННОЙ МОЗГ (СМ) состоит из 2-х симметричных половин, разделенных спереди глубокой щелью, а сзади спайкой. Имеет серое и белое вещ-во. Серое вещ-во имеет - передние, задние и боковые рога. И состоит из тел нейроцитов, нервных волокон и нейроглии.
Нейроциты СМ в основом мультиполярные. Они окружены нервными волокнами — нейропилью. Аксоны в нейропиле слабомиелинизированы, а дендриты не миелинизированы. Нейроциты СМ образуют ядра.
Задние рога СМ содержат следующие виды нейроцитов:
а) пучковые нейроциты —получают чувствительные импульсы от нейроцитов спинальных ганглиев и передают в вышележащие отделы НС.
б) внутренние нейроциты — передают чувствительные импульсы со спинальных ганглиев в двигат. нейроциты перед. рогов и в соседние сегменты.

В задних рогах СМ имеются 3 зоны:
1. Губчатое вещество — состоит из мелких пучковых нейроцитов и глиоцитов.
2. Желатинозное вещество — содержит большое количество глиоцитов.
3. Собственное ядро СМ — состоит из пучковых нейроцитов, передающих импульсы в мозжечок и зрительный бугор.
4. Ядро Кларка (Грудное ядро) — сос.из пучковых нейроцитов, аксоны кот. в сост. бок. канатиков идут в мозжечок.

В боковых рогах имеются 2 медиальные промежуточные ядра и латеральное ядро. Аксоны медиальных промежуточных ядер передают импульсы в мозжечок. Латеральное ядро боковых рогов в грудном и поясничном отделе является центральным ядром симпатического отдела ВНС; аксоны нейроцитов этих ядер идут в сост. перед. корешков СМ и оканчиваются на нейроцитах симпатического ствола.

Передние рога СМ содержат много мотонейронов (двигат. нейронов), образующие 2 группы ядер:
1. Медиальная группа ядер — иннервирует мышцы туловища.
2. Лат. группа ядер хорошо выражена в области шейного и поясничного утолщения — иннервирует мышцы конечностей.

ГОЛОВНОЙ МОЗГ — является высшим центральным органом регуляции всех жизненноважных функций организма.
ГМ развивается из нервной трубки, кот. эмбриогенезе подразделяется на три мозговых пузыря: передний, средний и задний, кот. потом преобразуются в пять отделов ГМ.
Кора БПШ представлена слоем серого вещества толщиной 3-5 мм. В коре насчитывают до 15 и более млрд. нейроцитов. Все нейроциты коры мультиполярные.

Цитоархитектоника (расположение клеток) (В коре принято различать 6 слоев):
1. Молекулярный слой (самый поверхностный)
2. Наружный зернистый слой
3. Пирамидный слой
4. Внутренний зернистый слой
5. Ганглионарный слой
6. Слой полиморфных клеток

Миелоархитектоника (Среди нервных волокон коры полушарий головного мозга можно выделить):

  1. ассоциативные волокна — связывают отдельные участки коры одного полушария

  2. комиссуральные волокна — соединяют кору двух полушарий

  3. проекционные волокна — соединяют кору с ядрами низших отделов центральной нервной системы. Афферентные проекционные волокна заканчиваются в слое пирамидальных нейронов[5]

Структурно-функциональной единицей коры БПШ является модуль или колонка. Модуль — это совокупность нейроцитов всех 6-ти слоев, расположенных на одном перпендикулярном пространстве и тесно взаимосвязанных между собой и подкорковыми образованьями. Т.е. это цилиндр, пронизывающий все 6 слоев коры, ориентированный своей длинной осью перпендикулярно к поверхности коры и имеющий диаметр около 300 мкм. В коре БПШ человека насчитывается около 3 млн. модулей.
В каждом модуле содержится до 2 тысяч нейроцитов. Вход импульсов в модуль происходит с таламуса по 2-м таламокортикальным волокнам и по 1-му кортикокортикальному волокну с коры данного или противоположного полушария. Кортикокортикальные волокна начинаются с пирамидных клеток 3-го и 5-го слоя коры данного или противоположного полушария, входят в модуль и пронизывают ее с 6-го по 1-й слой, отдавая коллатерали для синапсов на каждом слое. Таламокортикальные волокна — специфические афферентные волокна идущие с таламуса, пронизывают отдавая коллатерали с 6-го по 4-ый слой в модуле. Благодаря наличию сложной взаимосвязи нейроцитов всех 6-ти слоев поступившая информация анализируется в модуле. Выходные эфферентные пути из модуля начинаются с крупных и гигантских пирамидных клеток 3-го, 5-го и 6-го слоя. Кроме участия в формировании проекционных пирамидных путей каждый модуль устанавливает связи с 2-3 модулями данного и противоположного полушария.
Белое вещество конечного мозга состоит из ассоциативных (соединяют извилины одного полушария), комиссуральных (соединяют извилины противоположных полушарий) и проекционных (соединяют кору с нижележащими отделами НС) нервных волокон.
Кора БПШ содержит также мощный нейроглиальный аппарат, выполняющий трофическую, защитную, опорно-механическую функцию. Глия содержит все известные элементы — астроциты, олигодендроглиоциты и мозговые макрофаги.
МОЗЖЕЧОК — является центральным органом равновесия и координации движений. Различают серое и белое вещество мозжечка. Серое вещество представлено корой мозжечка и ядрами мозжечка (зубовидное, пробковидное и шарообразное).

В коре мозжечка имеется 3 слоя:
1. Наружный, молекулярный, слой — состоит из корзинчатых и звездчатых нейроцитов, по функции являющихся ассоциативными.
2. Средний, ганглионарный слой — сост.из 1 ряда грушевидных клеток Пуркинье. Дендриты, поднимаются в молекулярный слой и сильно разветвляются, а аксоны образуют эфферентные пути мозжечка (посылают импульсы к мотонейронам CМ).
3. Внутренний, зернистый слой — сост. из клеток зерен, больших звездчатых, веретеновидно-горизонтальных нейроцитов (ассоциативные).

Афферентные волокна мозжечка:
1. Моховидные волокна — несут импульсы с моста и продолговатого мозга. Образуют синапсы на клетках зернистого слоя, а аксоны клеток зернистого слоя поднимаются в молекулярный слой и передают импульсы дендритам грушевидных клеток.
2. Лазящие волокна — несут импульсы со спинного мозга и с вестибулярного аппарата. Проходят транзитом через зернистый и ганглионарные слои в молекулярный слой и образуют там синапсы с дендритами грушевидных клеток Пуркинье.
Поступающая информация в коре мозжечка перерабатывается и на основе этого производится коррекция двигательных актов.
Эфферентные пути мозжечка начинаются с грушевидных клеток Пуркинье ганглионарного слоя. Аксоны этих клеток переключаются на клетках ядра мозжечка и посылают импульсы мотонейронам СМ.

Клетки коры мозжечка очень чувствительны к действию интоксикации. Ярким примером этого является алкогольное опьянение. Кот. приводит к расстройству координации движений и равновесия.



ВЕГЕТАТИВНАЯ(автономная) НЕРВНАЯ СИСТЕМА (ВНС) иннервирует внутренние органы, кровеносные сосуды, железы и регулирует процессы кровообращения, дыхания, пищеварения, обмена веществ, терморегуляции и т.д. ВНС независима от сознания, но ее деятельности находятся под контролем коры головного мозга.

ВНС подразделяется на симпатический и парасимпатический отделы, которые в известной степени являются антагонистами.


Так, при стимуляции симпатического отдела ВНС наблюдается:
- увеличение частоты и силы сердечных сокращений;
- повышение артериального давления;
- расширение зрачков, бронхов;
- снижение тонуса кишечника;
- повышение адаптационно-трофической потенции тканей органов.


При стимуляции парасимпатического отдела ВНС наблюдается:
- снижение силы и частоты сокращений сердца;
- снижение артериального давления;
- усиливается перистальтика кишечника, и т.д., т.е. организм приходит в состояние покоя.

Автономная (вегетативная) нервная система подразделяется на центральный и периферический отделы.


Центральный отдел


- парасимпатические ядра 3, 7, 9 и 10 пар черепных нервов, лежащие в мозговом стволе (краниобульбарный отдел), ядра, залегающие в сером веществе трёх крестцовых сегментов (сакральный отдел);

- симпатические ядра, расположенные в боковых рогах тораколюмбального отдела спинного мозга.


Периферический отдел


-вегетативные нервы, ветви и нервные волокна, выходящие из головного и спинного мозга;

-вегетативные сплетения;

-узлы вегетативных сплетений;

-симпатический ствол с узлами, межузловыми и соединительными ветвями и симпатическими нервами;



-концевые узлы парасимпатической части ВНС.

следующая страница >>