Владислав Фельдблюм «Нано» на стыке наук - shikardos.ru o_O
Главная
Поиск по ключевым словам:
Похожие работы
Владислав Фельдблюм «Нано» на стыке наук - страница №2/9

При диспергационных методах исходные тела измельчают до наночастиц. Данный подход к получению наночастиц образно называется некоторыми учеными «подход сверху вниз». Это самый простой из всех способов создания наночастиц, своего рода «мясорубка» для макротел. Данный метод широко используется в производстве материалов для микроэлектроники, он заключается в уменьшении размеров объектов до нановеличин в пределах возможностей промышленного оборудования и используемого материала. При диспергационном способе, в условиях достаточного поступления энергии (прежде всего механической), размер фрагментов, на которые распадается монокристалл, уменьшается. Пока приток механической энергии велик, большинство фрагментов имеют нанометровый размер и система остается в наносостоянии. Когда же «мясорубка» останавливается, нескомпенсированность поверхностных связей приводит к тому, что нанофрагменты начинают срастаться и укрупняться. Все это продолжается до тех пор, пока в системе не будет воссоздан исходный кристалл.


Чтобы предотвратить этот нежелательный эффект обратной кристаллизации, в систему вводится некоторый стабилизатор, который обычно представляет собой молекулярный раствор белков, полимеров или поверхностно активных веществ (ПАВ). На определенной стадии, когда размер кристалла выходит за рамки нанометровой области, стабилизатор вступает в действие: его молекулы облепляют растущую наночастицу со всех сторон, что препятствует ее дальнейшему росту. Регулируя состав и концентрацию стабилизатора, можно получать наночастицы любого диаметра. Разные стабилизаторы по-разному взаимодействуют с наночастицами.













Измельчать вещество в наночастицы можно не только механически. Российская компания «Передовые порошковые технологии» получает наночастицы, взрывая металлическую нить мощным импульсом тока.




Электровзрывной метод получения наночастиц.

Существуют и более экзотические способы получения наночастиц. Американские ученые в 2003 году собрали с листьев фигового дерева микроорганизмы Rhodococcus – и поместили их в золотосодержащий раствор. Бактерии действовали как химический восстановитель, собирая из ионов серебра аккуратные наночастицы диаметром около 10 нм. Строя наночастицы, бактерии чувствовали себя нормально и продолжали размножаться.

При конденсационных методах (“подход снизу вверх”) наночастицы получают путем объединения отдельных атомов. Метод заключается в том, что в контролируемых условиях происходит формирование ансамблей из атомов и ионов. В результате образуются новые объекты с новыми структурами и, соответственно, с новыми свойствами, которые можно программировать путем изменения условий формирования ансамблей. Этот подход облегчает решение проблемы миниатюризации объектов, приближает к решению ряда проблем литографии высокого разрешения, создания новых микропроцессоров, тонких полимерных пленок, новых полупроводников. Методом «снизу-вверх», манипулируя молекулами и атомами, можно создавать искусственные объекты (синтетические молекулы, кластеры, состоящие из сотен атомов), которых не существует в природе, и создавать из них блоки наноматериалов. В связи с этим изучение атомов и молекул проводят с точки зрения их функций.

Этот метод основан на феномене конденсации, с которым все хорошо знакомы. Конденсация (от лат. condensatio – уплотнение, сгущение) – это переход вещества из газообразного состояния в конденсированное (твердое или жидкое) вследствие его охлаждения. Если хорошенько подышать на стеклышко, оно запотеет. На самом деле это означает, что на нем образуется множество крошечных, не видимых глазу капелек воды. Если температура воздуха в помещении ниже температуры выдыхаемого нами пара, то при дальнейшем охлаждении микроскопические капельки будут собираться в более крупные и явные капли.




Образование капелек жидкости в процессе конденсации

Примерно то же самое происходит и при конденсационном способе получения наночастиц. Исходные макротела сначала испаряют, после чего образующийся пар конденсируют до образования наночастиц нужного размера. В результате компактное вещество превращается в ультрадисперсное. Нечто похожее происходит и при восстановлении наночастиц из ионных растворов, только при этом используется не пар, а жидкость.

Во всех методах получения наночастиц требуется мощный приток энергии от внешнего источника, поскольку эти методы приводят к получению наночастиц в неравновесном метастабильном состоянии. Как только приток энергии прекращается, система стремится вернуться к равновесию. Почему это происходит? Рассмотрим пример – монокристалл нагревают до плавления и последующего испарения. Затем образовавшийся пар резко охлаждают. По мере охлаждения зарождаются и укрупняются наночастицы. Они начинают упорядочиваться и объединяться в наноагрегаты. Если предоставить такую систему самой себе, то постепенно границы между наночастицами в агрегатах исчезают и они превращаются в микрокристаллы. При длительном выдерживании микрокристаллов в паре наиболее мелкие и дефектные из них испаряются, а более крупные и совершенные продолжают расти. И так до тех пор, пока в системе не воссоздастся исходный монокристалл. В течение всего интервала времени от момента, когда в паре уже накопилось заметное количество наночастиц, до момента, когда большинство наночастиц достигнет размера 100 нм, система находится в наносостоянии. Затем она переходит в равновесие, появление наночастиц прекращается. И если не создать искусственные условия для их консервации, то возникшие частицы могут перейти в стадию компактного вещества. В биохимическом, фотохимическом и радиационно-химическом синтезе конденсация наночастиц происходит не из пара, а из раствора в специальных условиях, обеспечивающих защиту наночастиц от слипания и реакций с раствором.

Рассмотрим способы получения наночастиц более подробно. Наночастицы могут образовываться в результате разложения при высокой температуре твердых веществ, содержащих катионы металлов, молекулярные анионы или металлорганические соединения. Такой процесс называется термолизом. Например, малые частицы лития можно получить разложением азида лития LiN3. Вещество помещается в откачанную кварцевую трубку и нагревается до 400оC. При температуре около 370оС азид разлагается с выделением газообразного N2, что можно определить по увеличению давления в вакуумированном пространстве. Через несколько минут давление падает до первоначального уровня, показывая, что весь N2 удален. Оставшиеся атомы лития объединяются в маленькие коллоидные металлические частицы. Таким методом можно получить частицы с размерами менее 5 нм. Частицы можно пассивировать, вводя в камеру соответствующий газ.

В процессах термического разложения обычно используют сложные металлорганические соединения, гидроксиды, карбонилы, формиаты, нитраты, оксалаты, амиды и амиды металлов, которые при определенной температуре распадаются с образованием синтезируемого вещества и выделением газовой фазы. Например, пиролизом формиатов железа, кобальта, никеля, меди в вакууме или инертном газе при температуре 470 – 530 К получают дисперсные порошки металлов со средним размером частиц 100 – 300 нм. Нанокристаллический порошок нитрида алюминия (AlN) со средним размером частиц 8 нм получали разложением в аммиаке при 900 К полиамида алюминия. Бориды переходных металлов можно получать пиролизом борогидридов при 600 – 700 К, то есть при температуре, которая гораздо ниже обычных температур твердофазного синтеза. Характерной особенностью термического разложения является сравнительно невысокая

селективность процесса, поскольку продукт реакции обычно представляет собой смесь целевого продукта и других соединений.

Метод восстановления используют для получения наноматериалов (чаще всего металлов) из исходных кислородосодержащих соединений. При переработке оксидов металлов в качестве восстановителей используют газы – водород, монооксид углерода, конвертированный природный газ. Этим процессам соответствуют реакции в результате которых получают нанопорошки металлов: Fe, W, Ni, Mo, Cu, Co. Распространенным методом получения высокодисперсных металлических порошков является восстановление соединений металлов (гидрооксидов, хлоридов, нитратов, карбонатов) в токе водорода при температуре менее 500 К. Достоинствами этого метода являются низкое содержание примесей и узкое распределение частиц порошка по размерам.

Широко используется и получение наночастиц в жидкой фазе, прежде всего методом химической конденсации. Химические методы получения наночастиц и ультрадисперсных систем известны достаточно давно. Коллоидный раствор золя золота (красного) с размером частиц 20 нм был получен в 1857г. М.Фарадеем. Агрегативная устойчивость золя объясняется образованием двойного электрического слоя на поверхности раздела твердое тело-раствор и возникновением электростатической составляющей расклинивающего давления, являющегося основным фактором стабилизации данной системы. Наиболее простым и часто используемым способом является синтез наночастиц в растворах при протекании различных реакций. Для получения металлических наночастиц применяют реакции восстановления, при которых в качестве восстановителя используют алюмо- и борогидриды, тетрабораты, гипофосфиты и многие другие неорганические и органические соединения. Наноразмерные частицы солей и оксидов металлов получают чаще всего в реакциях обмена и гидролиза. Например, золь золота с размером частиц 7 нм может быть получен восстановлением хлорида золота боргидридом натрия с использованием в качестве стабилизатора додекантиола. Тиолы широко используются для стабилизации наночастиц полупроводников. В качестве стабилизаторов используют и другие органические соединения, способные образовывать поверхностные комплексы. Реакцию гидролиза проводят в органических растворителях. Последующая полимеризация приводит к образованию геля. Этот метод обладает чрезвычайно широкими возможностями и позволяет получать материалы, содержащие и биологически активные макромолекулы.

К химическим методам относят и осаждение в растворах и расплавах. Общие закономерности образования наночастиц в жидких средах зависят от множества факторов: состава и свойств исходного вещества (раствора,

расплава); характера диаграммы равновесия фаз рассматриваемой системы; способа создания пересыщения раствора или расплава; используемого оборудования и режимов его работы. В случае синтеза необходимых фаз проводят термообработку порошка после его сушки или эти фазы объединяют в оду. После термообработки проводят дезагрегацию агрегатов до размеров наночастиц. Исходные вещества и растворитель выбирают так, чтобы побочные продукты можно было полностью удалять из целевого продукта при промывании и последующей термообработки без загрязнения окружающей среды. Для эффективного смешения реагентов используют перемешивающие устройства с различными типами мешалок (пропеллерные, стержневые, турбинные), циркуляционное перемешивание с помощью насосов (центробежных и шестеренчатых), диспергирующих устройств (форсунки, сопла, инжекторы, вращающиеся диски, акустические распылители и так далее).

Методом осаждения можно получать оксидные металлические и металлоксидные материалы, композиции на их основе, различные ферриты и соли. Ответственной стадией, определяющей свойства полученного порошка, является его отделение от жидкой фазы. С возникновением межфазной границы газ-жидкость резко увеличивают силы Лапласа, сжимаемые частицы. В результате действия этих сил в частицах наноразмерного спектра возникают сжимающие давления порядка мегапаскалей, которые используются при компактировании макрочастиц в монолитные пористые изделия. При этом в порах агрегата создаются гидротермальные условия, приводящие к увеличению растворимости частиц и упрочнению агрегатов за счет механизма растворение-конденсация. Частицы объединяются в прочный агрегат, а далее – в отдельный кристалл. Для удаления жидкой фазы из осадка используют процессы фильтрования, центрифугирования, электрофореза, сушки. Вероятность образования прочных агрегатов можно уменьшить за счет замещения воды органическими растворителями, а также использованием ПАВ, сублимационной сушки, применением сушильного агента в сверхкритических условиях. Разновидностью технологии получения наночастиц в жидких средах является управляемое растворение более крупных частиц в подходящих растворителях. Для этого необходимо затормозить или вообще прекратить процесс их растворения в интервале наноразмеров. Этим же способом можно проводить коррекцию размеров получаемых перечисленными методами частиц в случаях, когда их размер оказался больше необходимого.

При осаждении в расплавах жидкой средой являются расплавы солей или металлов (чаще всего используют расплавы солей). Образование твердой фазы происходит при достаточно высокой температуре, когда диффузионные процессы вызывают высокую скорость роста кристаллов. Основной проблемой при этом является исключение захвата синтезируемым порошком компонентов побочных соединений. Для выделения синтезированного порошка после охлаждения соль растворяют в подходящих растворителях. Изменяя степень неравновесности процесса можно регулировать структуру материала. Если остановить процесс на стадии, когда твердая фаза имеет наноразмеры, можно получать наноматериал. Однако сделать это весьма трудно из-за большой скорости диффузионного массопереноса при достаточно высокой температуре среды. Более перспективен этот метод для получения наночастиц растворением исходных более крупных частиц. В этом случае можно сразу получать нанокомпозит, если растворяющаяся среда, например стеклообразная, будет играть роль матрицы для наночастиц.

Интересным и важным методом получения наночастиц в растворах является «золь-гель метод». Этот процесс включает несколько основных технологических стадий. Первоначально получают водные или органические растворы исходных веществ. Из растворов образуют золи (коллоидные системы) с твердой дисперсной фазой и жидкой дисперсионной средой для получения золя используют, например, гидролиз солей слабых оснований или алкоголятов. Можно использовать и другие реакции, приводящие к образованию стабильных и концентрированных золей (например, применение пептизаторов – веществ, препятствующих распаду агрегатов частиц в дисперсных системах). Эффективным является нанесение на наночастицы в процессе гидролиза защитного слоя из водорастворимых полимеров или ПАВ, добавляемых вместе с водой в процессе гидролиза. Затем золь переводят в гель при удалении из него части воды нагреванием, экстракцией соответствующим растворителем. В ряде случаев проводят распыление водного золя в нагретую несмешивающуюся с водой органическую жидкость. Переводя золь в гель, получают структурированные коллоидные системы. Твердые частицы дисперсной фазы соединены между собой в рыхлую пространственную сетку, которая содержит в своих ячейках жидкую дисперсионную среду, лишая текучести систему в целом. Контакты между частицами легко и обратимо разрушаются при механических и тепловых воздействиях. Гели с водной дисперсионной средой называются гидрогелями, а с углеводородной – органогелями. Высушиванием геля можно получать аэрогели или ксерогели – хрупкие микропористые тела (порошки). Порошки используют для формования изделий, плазменного напыления и так далее. Гель можно использовать непосредственно для получения пленок или монолитных изделий. В настоящее время золь-гель метод широко используется для получения наночастиц из неорганических неметаллических материалов.

Важное место в нанотехнологиях занимает электрохимический метод получения наночастиц. Электрохимический метод связан с выделением на катоде вещества в процессе электролиза простых и комплексных катионов и анионов. Если в цепь постоянного электрического тока включить систему, состоящую из двух электродов и раствора (расплава) электролита, то у электродов будут протекать реакции окисления-восстановления. На аноде (положительный электрод) анионы отдают электроны и окисляются; на катоде (отрицательный электрод) катионы присоединяют электроны и восстанавливаются. Образующийся на катоде осадок в результате, например, электрокристаллизации, в морфологическом отношении может быть как рыхлым, так и плотным слоем из множества микрокристаллитов. На текстуру осадка влияют многие факторы, такие, например, как природа вещества и растворителя, тип и концентрация ионов целевого продукта и посторонних примесей, адгезионные свойства осаждаемых частиц, температура среды, электрический потенциал, условия диффузии и другие. Одним из перспективных научных направлений является использования электрохимического синтеза для конструирования наноструктурных материалов. Суть его заключается в формировании в ходе кинетически контролируемого электровосстановления двухмерных (лэнгмюровских) монослоев металлических наночастиц под монослойными матрицами ПАВ.

Одним из самых распространенных химических методов получения ультрадисперсных порошков металлов, нитридов, карбидов, оксидов, боридов, а также их смесей является плазмохимический синтез. Для этого метода характерны очень быстрое (за малые доли секунды) протекание реакции вдали от равновесия и высокая скорость образования зародышей новой фазы при относительно малой скорости их роста. При плазмохимическом синтезе используют низкотемпературную (400-800 К) азотную, аммиачную, углеводородную, аргонную плазму, которую создают с помощью электрической дуги, электромагнитного высокочастотного поля или их комбинации в реакторах, называемых плазмотронами. В них поток исходных веществ (газообразных, жидких или твердых) быстро пролетает через зону, где поддерживается плазма, получая от нее энергию для проведения реакций химического превращения. Плазмообразующим газом может быть и само исходное вещество. Характеристики получаемых порошков зависят от используемого сырья, технологии синтеза и типа плазмотрона; их частицы являются монокристаллами и имеют размеры 10-100 нм и более. Процессы, происходящие при плазмохимическом синтезе и газофазном методе получения наночастиц, близки между собой. После взаимодействия в плазме происходит образование активных частиц, находящихся в газовой фазе. В дальнейшем необходимо сохранить их наноразмеры и выделить из газовой фазы. На практике в настоящее время используются реакторы, в рабочий объем которых вводятся излучения лазера через специальное окно и поток реакционной смеси. В области их пересечения возникает реакционная зона, где происходит образование частиц. Размер частиц зависит от давления реактора и интенсивности излучения лазера. Параметрами лазерного излучения управлять значительно легче (чем высокочастотной или дуговой плазмой), что позволяет получать

более узкое распределение частиц по размерам. Таким способом получили порошок нитрида кремния с размерами частиц 10-20 нм.

Разновидностью вышеописанного является электроэрозионный метод. Суть метода заключается в образовании дуги между электродами, погруженными в ванну с жидкостью. В этих условиях вещество электродов частично диспергируется и взаимодействует с жидкостью с образованием дисперсного порошка. Например, электроэрозия алюминиевых электродов в воде приводит к образованию порошка гидроксида алюминия. Полученный твердый осадок отделяют от жидкой фазы методами фильтрации, центрифугирования, электрофореза. Затем порошок сушат и в случае необходимости предварительно измельчают. В процессе последующей термообработки из порошка синтезируют целевой продукт, из которого в процессе дезагрегации получают частицы нужного размера. Этим методом можно получать частицы наноразмеров, если в жидкую фазу помещать частицы большого размера. Ещё одна разновидность - ударно-волновой или детонационный синтез. Данным методом наночастицы получают в плазме, образованной в процессе взрыва бризантных взрывчатых веществ (ВВ) во взрывной камере (детонационной трубе). В зависимости от мощности и типа взрывного устройства ударно-волновое взаимодействие на материал осуществляется за очень короткий промежуток времени (десятые доли микросекунд) при температуре более 3000 К и давлении в несколько десятков гектопаскалей. При таких условиях возможен фазовый переход в веществах с образованием упорядоченных диссипативных наноразмерных структур. Ударно-волновой метод наиболее эффективен для материалов, синтез которых осуществляется при высоких давлениях, например, порошков алмаза, кубического нитрата бора и других.

Сочетанием различных методов стал механохимический синтез наночастиц. При этом способе обеспечивают механическую обработку твердых тел, в результате которой происходят измельчение и пластическая деформация веществ. Измельчение материалов сопровождается разрывом химических связей, что предопределяет возможность последующего образования новых химических связей, то есть протекание механохимических реакций. Механическое воздействие при измельчении материалов является импульсным; при этом возникновение поля напряжений и его последующая релаксация происходят не в течение всего времени пребывания частиц в реакторе, а только в момент соударения частиц и в короткое время после него. Механическое воздействие бывает не только импульсивным, но и локальным, так как происходит не во всей массе твердого вещества, а лишь там, где возникает и затем релаксирует поле напряжений. Воздействие энергии, выделяющей при высокой степени неравновесности во время удара или истирания, из-за низкой теплопроводности твердых тел приводит к тому, что какая-то часть вещества находится в виде ионов и электронов – в состоянии плазмы. Механохимические процессы в твердом теле можно объяснить с использованием фононной теории разрушения хрупких тел (фонон – квант энергии упругих колебаний кристаллической решетки).

Механическое измельчение твердых материалов осуществляют в мельницах сверхтонкого измельчения (шаровых, планетарных, вибрационных, струйных). При взаимодействии рабочих органов с измельчаемым материалом возможен его локальный кратковременный разогрев до высоких (плазменных) температур, получение которых в обычных условиях осуществляется при высоких температурах. Механическим способом можно получать нанопорошки с размером частиц от 200 до 5-10 нм. Так, при помоле смеси металла и углерода в течении 48 часов были получены частицы TiC, ZrC, VC и NbC с размером 7-10 нм. В шаровой мельнице из смеси порошков вольфрама углерода и кобальта с исходным размером частиц около 75 мкм за 100 часов были получены частицы нанокомпозита WC-Co с размером частиц 11-12 нм.

Очень интересны и перспективны биохимические методы получения наноматериалов. Во многих случаях живые организмы, например, некоторые бактерии и простейшие организмы, производят минеральные вещества с частицами и микроскопическими структурами в нанометровом диапазоне размеров. В процессах биоминерализации действуют механизмы тонкого биохимического контроля, в результате чего производятся материалы с четко определенными характеристиками. Живые организмы могут быть использованы как прямой источник ультрадисперсных материалов, свойства которых могут быть изменены путем варьирования биологических условий синтеза или переработки. Ультрадисперсные материалы, полученные биохимическими методами синтеза, могут быть исходными материалами для некоторых уже опробованных и известных методов синтеза и обработки наноматериалов, а также в ряде технологических процессов. Пока работ в этом направлении исследований немного, но уже можно указать ряд примеров получения и использования биологических наноматериалов. В настоящее время ультрадисперсные материалы могут быть получены из ряда биологических объектов, например, ферритинов и связанных с ними белков, содержащих железо, магнетических бактерий и другое. Так, ферритины (вид белков) обеспечивают для живых организмов возможность синтезировать частицы гидроксидов и оксифосфатов железа нанометрового размера. Способность магнетотактических бактерий использовать линии магнитного поля Земли для собственной ориентации позволяет иметь цепочки наноразмерных (40-100 нм) однодоменных частиц магнетита.

Возможно также получение наноматериалов с помощью микроорганизмов. В настоящее время открыты бактерии, окисляющие серу,

железо, водород и другие вещества. С помощью микроорганизмов стало возможным проводить химические реакции для извлечения из руд различных металлов, минуя традиционные технологические процессы. В качестве примера можно привести технологию бактериального выщелачивания меди из сульфидных материалов, урана из руд, отделение примесей мышьяка от концентратов олова и золота. В некоторых странах в настоящее время до 5% меди, большое количество урана и цинка получают микробиологическими методами. Существуют хорошие предпосылки, подтвержденными лабораторными исследованиями, использования микробиологических процессов извлечения марганца, висмута, свинца, германия из бедных карбонатных руд. С помощью микроорганизмов можно вскрыть тонко вкрапленное золото арсенопиритных концентратов. Поэтому в технической микробиологии появилось новое направление, которое называют микробиологической гидрометаллургией.

Использование низких температур характерно для криохимического синтеза наночастиц. Высокая активность атомов и кластеров металлов в отсутствие стабилизаторов обуславливает реакцию в более крупные частицы. Процесс агрегации атомов металлов идет практически без энергии активации. Стабилизацию активных атомов почти всех элементов периодической системы удалось осуществить при низких (77 К) и сверхнизких (4-10 К) температурах методом матричной изоляции. Суть этого метода состоит в применении инертных газов при сверхнизких температурах. Чаще всего в качестве матрицы используются аргон и ксенон. Пары атомов металлов конденсируют с большим, обычно тысячекратным, избытком инертного газа на поверхность, охлаждаемую, до 10-12 К. Значительное разбавление инертных газов и низкие температуры практически исключают возможность диффузии атомов металлов, и в конденсате происходит их стабилизация. Физико-химические свойства таких атомов исследуют различными спектральными и радиоспектральными методами.


1.5. Методы исследования наночастиц
Для исследования наночастиц применяются современные методы просвечивающей и сканирующей электронной микроскопии, зондовой микроскопии, рентгенографии, дифракции нейтронов, рентгенофлюоресцентной спектроскопии, масс-спектрометрии, электронно-оптические методы и др. Некоторые из перечисленных методов позволяют не только изучать наночастицы, но и манипулировать ими с целью создания различных наноматериалов и наноразмерных (молекулярных) устройств. К

числу наиболее эффективных современных методов относится метод зондовой микроскопии. Применение в этом методе новейших атомно-силовых микроскопов даёт возможность достигать субнанометрового разрешения (порядка 10-2 нм).

. Бурное развитие нанонауки в последние годы оказалось возможным благодаря доступности методов определения строения и структуры нанообъектов. Среди них важнейшая роль принадлежит электронной микроскопии и сканирующей зондовой микроскопии (точнее было бы говорить «наноскопии»). Обычный оптический микроскоп, даже самого лучшего качества, не дает возможности разглядеть не только отдельные атомы, но и наночастицы. Это связано с тем, что в нем для получения изображения используют видимый свет, длина волны которого составляет 400–700 нм. Из волновой оптики известно, что излучение с длиной волны не позволяет различить два объекта, если расстояние между ними значительно меньше . Поэтому в оптический микроскоп можно увидеть живые клетки, размер которых составляет микроны (т.е. тысячи нанометров), но более мелкие объекты видны не будут. Для этого требуется излучение со значительно меньшей длиной волны.

Выход был найден в начале 1930-х гг., когда немецкие инженеры Э.Руска и М.Кнолл предложили вместо света использовать поток электронов, которые, как известно, обладают волновыми свойствами, причем движущемуся электрону соответствует определенная длина волны, которая зависит от его энергии. В 1931 г. Руска и Кнолл создали первый электронный микроскоп, способный увеличивать изображение всего в 400 раз, однако он уже воплощал все принципы, используемые и в современных приборах. В настоящее время с помощью электронных микроскопов можно добиться увеличения в 90 млн раз и добиться пространственного разрешения в 0,06 нм, что меньше размера большинства атомов. Устройства оптического и электронного микроскопа имеют много общего. Они состоят из источника излучения, системы фокусировки излучения на изучаемом объекте и регистрирующего устройства – детектора. В электронном микроскопе в качестве источника электронов используется электронная пушка, для фокусировки пучка электронов применяют электромагнитные линзы, а в качестве детектора – люминесцентный экран.





Сравнение оптического и электронного микроскопов

По методике измерения различают просвечивающие и сканирующие (растровые) электронные микроскопы. Они дают различную информацию об объекте и часто используются совместно. В просвечивающем электронном микроскопе (ПЭМ) пучок электронов проходит через очень тонкий (< 100 нм) слой вещества, давая информацию о его внутренней микроструктуре. Микроскоп представляет собой устройство, состоящее из длинной широкой трубы – электронной пушки, конденсора (электронная линза) и люминесцентного экрана, соединенного с фотокамерой или компьютером, на котором и возникает изображение. Электронная пушка содержит вольфрамовую нить, раскаляемую добела электрическим током. При такой температуре атомы вольфрама начинают испускать электроны. Весь путь электронов от пушки до объекта проходит в высоком вакууме, т.к. электроны ионизируют любой газ. В более мощных микроскопах электроны генерируют при помощи кристалла кремния, находящегося в сильном электрическом поле. Объект помещают на предметный столик не в виде куска, а в форме пленки или тонкого среза. При работе микроскопа объект просвечивают пучком электронов. Часть электронов, взаимодействуя с атомами вещества, отклоняется, попадая в системы магнитных линз, которые и формируют на люминесцентном экране изображение внутренней структуры объекта. Рассеянные электроны задерживают при помощи диафрагм, позволяющих регулировать контрастность изображения. Заметим, что все микрофотографии по сути своей черно-белые, они не способны передавать цвет, хотя исследователи часто придают им ту или иную окраску. Поскольку электроны поглощаются молекулами, входящими в состав воздуха, то в пространстве, через которое проходит электронный пучок в микроскопе, создают вакуум. Образец также помещают в отсек, который вакуумируют,

т.е. откачивают из него воздух специальным насосом. Электронный микроскоп – очень дорогое оборудование, он доступен лишь крупным исследовательским лабораториям.





Устройство сканирующего (растрового)
электронного микроскопа


В отличие от просвечивающих, сканирующие электронные микроскопы (СЭМ) строят изображение внешней поверхности образца, сканируя ее с помощью электронного луча, сжатого магнитными линзами до размера порядка 5 нм. После взаимодействия луча с поверхностью электроны рассеиваются и попадают на детектор, регистрирующий сигнал и преобразующий его в изображение поверхности. Интенсивность сигнала зависит от рельефа поверхности, размера частиц и их химического состава. Все это можно определять с помощью сканирующего электронного микроскопа.



Изображение поверхности оксида цинка, осажденного на золотой подложке. Изображение получено на сканирующем электронном микроскопе

Существуют и другие виды сканирующих устройств. Впервые созданный в 1981 г. сканирующий туннельный микроскоп (СТМ) содержит миниатюрный зонд – тончайшую иглу из золота, которая скользит по исследуемой поверхности образца. Конец этой иглы настолько тонкий, что состоит всего из одного атома! Именно он и приближается к образцу на расстояние около одного нанометра. На поверхности иглы возникает небольшой положительный заряд, поэтому электроны с поверхности образца переходят на зонд. При этом зонд не соприкасается с поверхностью, хотя и сильно приближен к ней. Такое явление беспрепятственного прохождения частиц через потенциальный барьер называют туннельным эффектом. Зонд сканирует поверхность, перемещаясь над образцом при помощи специальных миниатюрных двигателей, способных задавать шаг вплоть до 0,01 нм. Обычно зонд перемещают вдоль поверхности на постоянной высоте, при этом фиксируют изменение величины туннельного тока, т.е. потока электронов через зонд. Его и преобразуют в изображение поверхности. В другом методе кончик зонда перемещают вдоль поверхности образца таким образом, чтобы туннельный ток был постоянен, при этом фиксируют изменение расстояния от зонда до поверхности. Траектория движения острия зонда также отображает поверхность образца.

В атомно-силовом микроскопе (АСМ), устроенном аналогично СТМ, вместо туннельного тока измеряют силу вандерваальсового отталкивания зонда от поверхности образца. Зонд имеет нанометровые размеры и закреплен на микропружине – кантилевере.





Схематическое изображение и электронная
микрофотография типичного кантилевера с зондом


Силовое взаимодействие конца зонда с изучаемым нанообъектом приводит к изгибу кантилевера, который обычно детектируется с помощью оптической системы, выполненной по схеме оптического рычага. В этой схеме изгиб кантилевера приводит к перемещению пятна отраженного лазерного луча на четырехсекционном фотодиоде. Это перемещение изменяет соотношение фототоков от различных секций, которое измеряется с помощью электронных схем.



Схема системы детектирования изгиба
кантилевера оптической системой


Cамым простым режимом работы АСМ является измерение нанорельефа поверхности. При этом образец перемещается под зондом по заданной траектории, а с помощью оптической системы детектирования измеряется изгиб кантилевера (и сила взаимодействия конца зонда с наноучастком поверхности). Пространственное разрешение АСМ зависит от размера кантилевера и кривизны его острия и, в принципе, может превышать разрешение СЭМ. В отличие от последнего, АСМ не требует сверхвысокого вакуума и может работать в обычной воздушной или даже жидкой среде, что позволяет изучать биологические объекты. К недостаткам АСМ относится то, что по скорости сканирования они значительно уступают СЭМ.



АСМ-изображение поверхности графита. Размер изображения (2x2) нм2

C помощью АСМ можно не только изучать расположение атомов на поверхности образца, но и изменять саму структуру поверхности. Для этого можно использовать физическое взаимодействие зонда с поверхностью, индуцировать с помощью зонда ее электрохимическое окисление или, используя взаимодействие поверхностных атомов с зондом, механически перемещать их с места на место, осуществляя тем самым процесс литографии на наноуровне. В 2005 г. ученые из Японии (Sugimoto Y. e.a. Nature Materials, 2005, v. 4, p. 156–159), используя сверхвысоковакуумный АСМ, построили изображение химического символа олова, состоящее из 120 атомов этого элемента, нанесенных на поверхность германия. Изображение получено при комнатной температуре.



Пример АСМ-нанолитографии. Размер изображения (7,7x4,8) нм2

Помимо различных видов микроскопии для исследования нанообъектов используют и многие другие физические методы, такие, как рассеяние рентгеновских лучей, спектроскопия, масс-спектрометрия. Различные методы хорошо дополняют друг друга, и можно утверждать, что в настоящее время существует возможность детально описывать реальную структуру наночастиц с высоким пространственным разрешением. Однако экспериментальное оборудование для подобных исследований настолько дорогое, что зачастую недоступно даже крупным исследовательским центрам. В этом случае на помощь приходят так называемые Центры коллективного пользования, поддерживаемые содружеством заинтересованных организаций. Один из таких центров действует в Московском университете, он объединяет усилия трех факультетов – химического, физического и факультета наук о материалах. Услугами центра бесплатно могут пользоваться все организации, которые проводят исследования в рамках федеральных целевых программ.


1.6. Нанохимия и катализ
Описано получение наночастиц платины, палладия, родия и иридия и их применение в каталитически реакциях гидрирования циклооктена, 1-додецена и орто-хлорнитробензола [25]. Для получения наночастиц соли металлов восстанавливали спиртами. Диаметры наночастиц составляли от 0,74 нм у иридия до 2,2 нм у палладия и платины. Наночастицы металлов стабилизировали сополимером 1-винилпирролидона с акриловой кислотой. Гидрирование орто-хлорнитробензола в орто-хлор-анилин при 57 С протекало с селективностью 97,1 % при конверсии, близкой к 100 %.

Установлена возможность каталитического электрохимического (анодного) окисления СО в СО2. Катализаторами-перенос-чиками электронов от СО к поверхности анода служили ансамбли наночастиц золота размером 2-5 нм, покрытые молекулами декантиолов [26]. Из-за своей химической инертности золото до недавнего времени мало интересовало химиков-каталитиков. Положение изменилось, когда ионы Aun+ (где 1≤ n ≤ 3), закрепленные на поверхности цеолита, оказались активными катализаторами реакции H2O + CO = H2 + CO2 при температуре 60С [27].

Изучена циклотримеризация ацетилена в бензол на наночастицах Pdn (1≤ n ≤ 30). Сделан вывод, что уже единичный атом Pd, а также частицы Pd2 и Pd3 катализируют реакцию циклотримеризации ацетилена при 27С [22, с.229-230]. Эти результаты позволяют по-новому взглянуть на пионерские исследования в области гомогенного катализа, выполненные 30-40 лет назад [28]. Уже тогда были в мягких условиях осуществлены гомогенно-каталитические реакции полимеризации, димеризации, тримеризации, изомеризации, гидрирования и др. Каталитические комплексы металлов в растворах в то время не называли наночастицами (этот термин стали использовать, когда появились методы измерения размеров частиц), хотя они уже были таковыми. К ним, с позиций современного знания, можно отнести каталитические системы Циглера-Натта для низкотемпературной полимеризации непредельных углеводородов в растворах, подробно рассмотренные в книге [29]. К наносистемам теперь можно отнести и впервые предложенные в нашей стране гомогенные каталитические системы низкотемпературной димеризации олефинов [30].

Необходимо отметить, что еще Карл Циглер обнаружил «никелевый эффект», т.е. каталитические свойства никеля в растворах. Он называл такой атомизированный никель «голым» или «коллоидным» [31]. Затем ученик Циглера и его последователь Гюнтер Вилке со своими сотрудником Бориславом Богдановичем синтезировали комплекс атомарного никеля с этиленом и изучили его каталитические свойства [32]. В нашей стране были впервые синтезированы смешанные комплексы никеля с этиленом, пропиленом и триизопропилфосфином [33]:



На этих комплексах, как на моделях, был изучен механизм низкотемпературной димеризации олефинов [34,35].

Было установлено, что активными катализаторами димеризации олефинов являются различные комплексы никеля на твёрдых носителях, частично восстановленные добавками небольших количеств алюминийорганических соединений[36]. В свете современных представлений это – типичные нанокатализаторы. Более того, удалось обнаружить, что активным катализатором димеризации олефинов (даже без добавок алюминийорганических соединений) становится обычный хлорид никеля на алюмосиликатном носителе, прогретый при высокой температуре под вакуумом или в атмосфере инертного газа. Его активность настолько велика, что димеризация этилена и пропилена протекает уже при комнатной температуре и атмосферном давлении. Эта интересная работа [37] была проведена в ярославском НИИМСК совместно с лабораторией академика Бориса Александровича Долгоплоска в ИНХС АН СССР (Москва). В дальнейшем было выяснено, что при такой термической активации от некоторых молекул NiCl2 отрывается атом хлора. Образующиеся наночастицы субхлорида никеля NiCl дают характерный сигнал в спектре ЭПР. Будучи стабилизированными за счёт фиксации на твёрдой алюмосиликатной подложке, они и вызывают димеризацию олефинов при мягких условиях.

Аналогичные эффекты, которые с нынешних позиций можно назвать каталитическими «наноэффектами», были обнаружении в реакциях жидкофазного диспропорционирования (метатезиса) олефинов на гетерогенных катализаторах. В изобретении [38] было найдено, что при частичном восстановлении обычного алюмо-молибденового катализатора добавками алюминийорганических соединений он становится активным в реакции метатезиса уже при комнатной температуре. Благодаря мягким условиям впервые удалось осуществить на этом катализаторе реакции этенолиза и пропенолиза гексенов.

Похожие наблюдения были сделаны и в каталитических реакциях жидкофазного селективного гидрирования. Интересно, что комплекс атомизированного палладия с трифенилфосфином, который сам по себе не является катализатором, приобретает исключительно высокую активность и селективность как гомогенный катализатор гидрирования циклопентадиена в циклопентен при кратковременном нагревании комплекса до 80-100С с последующим охлаждением в толуольном растворе [39]. В данном случае, в результате частичной термической диссоциации комплекса, толуольный раствор приобретал красно-коричневую окраску, оставаясь прозрачным в течение многих часов. Сегодня можно с уверенностью утверждать, что в работе [39] получался очень активный «коллоидный» палладий, стабилизированный оставшимся координированным трифенилфосфином. Такой раствор напоминает раствор «коллоидного никеля», с которым работал в своё время Карл Циглер. С современных позиций эти растворы ультрадисперсных металлов, стабилизированных органическими лигандами, относятся к каталитическим наносистемам.

Таким образом, наблюдаемое ныне активное «вторжение» наночастиц в катализ хорошо подготовлено предыдущими фундаментальными исследованиями, в том числе – выполненными в нашей стране. Эти исследования предвосхитили многое из того, что сегодня известно о роли нанохимии в катализе. Продолжением и развитием этих исследований стала совместная работа, выполненная учёными Ярославского государственного технического университета и Химического факультета МГУ имени М.В.Ломоносова [40]. В ней был приготовлен высокоактивный наноплатиновый катализатор на носителе – силикагеле. Был разработан метод получения такого катализатора путём термического разложения фосфиновых и фосфитных комплексов нульвалентной платины в контролируемых условиях. Полученный катализатор оказался настолько активным, что впервые позволил осуществить каталитическую дегидроциклизацию н-пентенов и даже н-пентана в циклопентадиен, которая до этого считалась практически невозможной.


Интересным применением катализа в нанотехнологии является расщепление воды при помощи наностержней как альтернатива традиционному электролизу.


<< предыдущая страница   следующая страница >>