2. Технические средства реализации информационных процессов - shikardos.ru o_O
Главная
Поиск по ключевым словам:
Похожие работы
2. Технические средства реализации информационных процессов - страница №7/7

Вирусы


Каким бы ни был вирус, пользователю необходимо знать основ ные методы защиты от компьютерных вирусов. Для зашиты от вирусов можно использовать:

  • общие средства защиты информации, которые полезны также как и страховка от физической порчи дисков, неправильно работа­ ющих программ или ошибочных действий пользователя;

  • профилактические меры, позволяющие уменьшить вероят­ность заражения вирусом;

  • специализированные программы для защиты от вирусов.

Имеются две основные разновидности общих средств защиты информации, обеспечивающие:

  1. копирование информации — создание копий файлов и системных областей дисков;

  2. разграничение доступа, которое предотвращает несанкционированное использование информации, в частности защиту от изме нений программ и данных вирусами, неправильно работающими программами и ошибочными действиями пользователей.

Для обнаружения, удаления и защиты от компьютерных вирусов разработано несколько видов специальных программ, которые позволяют обнаруживать и уничтожать вирусы. Такие программы на зываются антивирусными. Различают следующие виды антивирус ных программ:

  • программы-детекторы;

  • программы-доктора или фаги;

  • программы-ревизоры;

  • программы-фильтры;

  • программы-вакцины или иммунизаторы.

Программы-детекторы —

осуществляют поиск характерного для конкретного вируса кода (сигнатуры) в оперативной памяти и в файлах и при обнаружении выдают соответствующее сообщение. Недостатком таких антивирусных программ является то, что они могут находить только те вирусы, которые известны разработчикам таких программ.



Программы-доктора или фаги, а также программы-вакцины —

не только находят зараженные вирусами файлы, но и «лечат» их, т. е. удаляют из файла тело программы-вируса, возвращая файлы в ис ходное состояние. В начале своей работы фаги ищут вирусы в опе ративной памяти, уничтожая их, и только затем переходят к «лече нию» файлов. Среди фагов выделяют полифаги, т. е. програм мы-доктора, предназначенные для поиска и уничтожения большого количества вирусов. Наиболее известные из них : Aidstest , Scan, Nor ton Antivirus, Doctor Web. Учитывая, что постоянно появляются новые вирусы, программы-детекторы и программы-доктора быстро устаревают и требуется регулярное обновление версий.



Антивирусы-полифаги —

наиболее распространенные средства по борьбе с вредоносными программами. Исторически они появи­ лись первыми и до сих пор удерживают несомненное лидерство в этой области.

В основе работы полифагов стоит простой принцип — поиск в программах и документах знакомых участков вирусного кода (так называемых сигнатур вирусов). В общем случае сигнатура — это та кая запись о вирусе, которая позволяет однозначно идентифициро вать присутствие вирусного кода в программе или документе. Чаще всего сигнатура — это непосредственно участок вирусного кода или его контрольная сумма (дайджест).

Первоначально антивирусы-полифаги работали по очень про стому принципу — осуществляли последовательный просмотр фай лов на предмет нахождения в них вирусных программ. Если сигна тура вируса была обнаружена, то производилась процедура удаления вирусного кода из тела программы или документа. Прежде чем на чать проверку файлов, программа-фаг всегда проверяет оператив ную память. Если в оперативной памяти оказывается вирус, то про исходит его деактивация. Это вызвано тем, что зачастую вирусные программы производят заражение тех программ, которые запуска ются или открываются в тот момент, когда вирус находится в актив ной стадии (это связано со стремлением экономить на усилиях по поиску объектов заражения). Таким образом, если вирус останется активным в памяти, то тотальная проверка всех исполняемых фай лов приведет к тотальному заражению системы.



Программы-ревизоры

относятся к самым надежным средствам защиты от вирусов. Ревизоры запоминают исходное состояние программ, каталогов и системных областей диска тогда, когда компью тер не заражен вирусом, а затем периодически или по желанию пользователя сравнивают текущее состояние с исходным. Обнару женные изменения выводятся на экран монитора. Как правило, сравнение состояний производят сразу после загрузки операцион ной системы. При сравнении проверяются длина файла, код цикли ческого контроля (контрольная сумма файла), дата и время моди фикации, другие параметры. Программы-ревизоры имеют достаточ но развитые алгоритмы, обнаруживают стелс-вирусы и могут даже очистить изменения версии проверяемой программы от изменений, внесенных вирусом. К числу программ-ревизоров относится широ­ ко распространенная в России программа Adinf .



Программы-фильтры, или «сторожа»

представляют собой не большие резидентные программы, предназначенные для обнаруже ния подозрительных действий при работе компьютера, характерных для вирусов. Такими действиями могут являться:



  • попытки коррекции файлов с расширениями СОМ, ЕХЕ;

  • изменение атрибутов файла;

  • прямая запись на диск по абсолютному адресу;

  • запись в загрузочные сектора диска;

  • загрузка резидентной программы.

При попытке какой-либо программы произвести указанные действия «сторож» посылает пользователю сообщение и предлагает запретить или разрешить соответствующее действие. Програм мы-фильтры весьма полезны, так как способны обнаружить вирус на самой ранней стадии его существования до размножения. Одна ко они не «лечат» файлы и диски. Для уничтожения вирусов требуется применить другие программы, например фаги. К недостаткам программ-сторожей можно отнести их «назойливость» (например, они постоянно выдают предупреждение о любой попытке копиро вания исполняемого файла), а также возможные конфликты с дру гим программным обеспечением. Примером программы-фильтра является программа Vsafe , входящая в состав пакета утилит MS DOS .

Вакцины, или иммунизаторы —

это резидентные программы, предотвращающие заражение файлов. Вакцины применяют, если отсутствуют программы-доктора, «лечащие» от вируса. Вакцинация возможна только от известных вирусов. Вакцина модифицирует программу или диск таким образом, чтобы это не отражалось на их работе, а вирус будет воспринимать их зараженными и поэтому не внедрится. В настоящее время программы-вакцины имеют ограниченное применение.



Сетевая модель 

Сетевая модель - теоретическое описание принципов работы набора сетевых протоколов, взаимодействующих друг с другом.

Сетевая модель OSI (англ. open systems interconnection basic reference model — базовая эталонная модель взаимодействия открытых систем, сокр. ЭМВОС; 1978 г.) — абстрактная сетевая модель для коммуникаций и разработки сетевых протоколов. Предлагает взгляд на компьютерную сеть с точки зрения измерений. Каждое измерение обслуживает свою часть процесса взаимодействия. Благодаря такой структуре совместная работа сетевого оборудования и программного обеспечения становится гораздо проще и прозрачнее.

Прикладной уровень


Прикладной уровень (уровень приложений; англ. application layer) — верхний уровень модели, обеспечивающий взаимодействие пользовательских приложений с сетью:

  • позволяет приложениям использовать сетевые службы:

    • удалённый доступ к файлам и базам данных,

    • пересылка электронной почты;

  • отвечает за передачу служебной информации;

  • предоставляет приложениям информацию об ошибках;

  • формирует запросы к уровню представления.

Протоколы прикладного уровня: RDPHTTPSMTPSNMPPOP3FTPXMPPOSCARModbusSIPTELNET.

Представительный уровень


Представительный уровень (уровень представления; англ. presentation layer) обеспечивает преобразование протоколов и кодирование/декодирование данных. Запросы приложений, полученные с прикладного уровня, на уровне представления преобразуются в формат для передачи по сети, а полученные из сети данные преобразуются в формат приложений. На этом уровне может осуществляться сжатие/распаковка или кодирование/декодирование данных, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.

Стандарты уровня представлений также определяют способы представления графических изображений. Для этих целей может использоваться формат PICT — формат изображений, применяемый для передачи графики QuickDraw между программами.

Другим форматом представлений является тэгированный формат файлов изображений TIFF, который обычно используется для растровых изображений с высокимразрешением. Следующим стандартом уровня представлений, который может использоваться для графических изображений, является стандарт, разработанный Объединенной экспертной группой по фотографии (Joint Photographic Expert Group); в повседневном пользовании этот стандарт называют просто JPEG.

Существует другая группа стандартов уровня представлений, которая определяет представление звука и кинофрагментов. Сюда входят интерфейс электронных музыкальных инструментов (англ. Musical Instrument Digital InterfaceMIDI) для цифрового представления музыки, разработанный Экспертной группой по кинематографии стандарт MPEG, используемый для сжатия и кодирования видеороликов на компакт-дисках, хранения в оцифрованном виде и передачи со скоростями до 1,5 Мбит/с, и QuickTime — стандарт, описывающий звуковые и видео элементы для программ, выполняемых на компьютерах Macintosh и PowerPC.

Протоколы уровня представления: AFP — Apple Filing Protocol, ICA — Independent Computing Architecture, LPP — Lightweight Presentation Protocol, NCP — NetWare Core Protocol, NDR — Network Data Representation, XDR — eXternal Data Representation, X.25 PAD — Packet Assembler/Disassembler Protocol.

Сеансовый уровень


Сеансовый уровень (англ. session layer) модели обеспечивает поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений.

Протоколы сеансового уровня: ADSP (AppleTalk Data Stream Protocol), ASP (AppleTalk Session Protocol), H.245 (Call Control Protocol for Multimedia Communication), ISO-SP (OSI Session Layer Protocol (X.225, ISO 8327)), iSNS (Internet Storage Name Service), L2F (Layer 2 Forwarding Protocol), L2TP (Layer 2 Tunneling Protocol), NetBIOS (Network Basic Input Output System), PAP (Password Authentication Protocol), PPTP (Point-to-Point Tunneling Protocol), RPC (Remote Procedure Call Protocol), RTCP (Real-time Transport Control Protocol), SMPP (Short Message Peer-to-Peer), SCP (Secure Copy Protocol), ZIP (Zone Information Protocol), SDP (Sockets Direct Protocol)..


Транспортный уровень


Транспортный уровень (англ. transport layer) модели предназначен для обеспечения надёжной передачи данных от отправителя к получателю. При этом уровень надёжности может варьироваться в широких пределах. Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приема), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных. Например, UDP ограничивается контролем целостности данных в рамках одной датаграммы, и не исключает возможности потери пакета целиком, или дублирования пакетов, нарушение порядка получения пакетов данных; TCP обеспечивает надёжную непрерывную передачу данных, исключающую потерю данных или нарушение порядка их поступления или дублирования, может перераспределять данные, разбивая большие порции данных на фрагменты и наоборот склеивая фрагменты в один пакет.

Протоколы транспортного уровня: ATP (AppleTalk Transaction Protocol), CUDP (Cyclic UDP), DCCP (Datagram Congestion Control Protocol), FCP (Fiber Channel Protocol), IL (IL Protocol), NBF (NetBIOS Frames protocol), NCP (NetWare Core Protocol), SCTP (Stream Control Transmission Protocol), SPX (Sequenced Packet Exchange), SST (Structured Stream Transport), TCP (Transmission Control Protocol), UDP (User Datagram Protocol).


Сетевой уровень


Сетевой уровень (англ. network layer) модели предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и «заторов» в сети.

Протоколы сетевого уровня маршрутизируют данные от источника к получателю. Работающие на этом уровне устройства (маршрутизаторы) условно называют устройствами третьего уровня (по номеру уровня в модели OSI).

Протоколы сетевого уровня: IP/IPv4/IPv6 (Internet Protocol), IPX (Internetwork Packet Exchange, протокол межсетевого обмена), X.25 (частично этот протокол реализован на уровне 2), CLNP (сетевой протокол без организации соединений), IPsec (Internet Protocol Security), ICMP (Internet Control Message Protocol), IGMP (Internet Group Management Protocol), RIP (Routing Information Protocol), OSPF (Open Shortest Path First).

Канальный уровень


Канальный уровень (англ. data link layer) предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля за ошибками, которые могут возникнуть. Полученные с физического уровня данные он упаковывает в кадры, проверяет на целостность, если нужно, исправляет ошибки (формирует повторный запрос поврежденного кадра) и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием.

Спецификация IEEE 802 разделяет этот уровень на два подуровня: MAC (англ. media access control) регулирует доступ к разделяемой физической среде, LLC (англ. logical link control) обеспечивает обслуживание сетевого уровня.

На этом уровне работают концентраторыкоммутаторымосты и другие устройства. Говорят, что эти устройства используют адресацию второго уровня (по номеру уровня в модели OSI).

Протоколы канального уровня: ARCnetATMCisco Discovery Protocol (CDP), Controller Area Network (CAN), EconetEthernetEthernet Automatic Protection Switching (EAPS),Fiber Distributed Data Interface (FDDI), Frame RelayHigh-Level Data Link Control (HDLC), IEEE 802.2 (provides LLC functions to IEEE 802 MAC layers), Link Access Procedures, D channel (LAPD), IEEE 802.11 wireless LANLocalTalkMultiprotocol Label Switching (MPLS), Point-to-Point Protocol (PPP), Point-to-Point Protocol over Ethernet (PPPoE), Serial Line Internet Protocol (SLIP, obsolete), StarLanSpanning tree protocolToken ringUnidirectional Link Detection (UDLD), x.25.

В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой. Это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODINDISUDI.

Физический уровень


Физический уровень (англ. physical layer) — нижний уровень модели, предназначенный непосредственно для передачи потока данных. Осуществляет передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов. Другими словами, осуществляет интерфейс между сетевым носителем и сетевым устройством.

На этом уровне также работают повторители сигнала и медиаконвертеры.

Функции физического уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом. К физическому уровню относятся физические, электрические и механические интерфейсы между двумя системами. Физический уровень определяет такие виды среды передачи данных как оптоволокно, витая пара, коаксиальный кабель, спутниковый канал передач данных и т. п. Стандартными типами сетевых интерфейсов, относящимися к физическому уровню, являются: V.35RS-232RS-485RJ-11RJ-45, разъемы AUI и BNC.

Протоколы физического уровня: IEEE 802.15 (Bluetooth)IRDAEIA RS-232EIA-422EIA-423RS-449RS-485DSLISDNSONET/SDH802.11 Wi-FiEtherloopGSM Um radio interfaceITU и ITU-TTransferJetARINC 818G.hn/G.9960.




Модель DOD (Модель TCP/IP) (англ. Department of Defense — Министерство обороны США) — модель сетевого взаимодействия, разработанная Министерством обороны США, практической реализацией которой является стек протоколов TCP/IP.

Прикладной уровень


Верхний уровень модели, включающий протоколы, обрабатывающие данные пользователей и осуществляющие управление обменом данными между приложениями. На этом уровне стандартизируется представление данных.

Транспортный уровень


Содержит протоколы для обеспечения целостности данных при сквозной передаче. Обеспечивает управление инициализацией и закрытием соединений.

Межсетевой уровень


Содержит протоколы для маршрутизации сообщений в сети; служит для размещения данных в дейтаграмме...

Уровень сетевого доступа


Нижний уровень модели. Содержит протоколы для физической доставки данных к сетевым устройствам. Этот уровень размещает данные в кадре.
<< предыдущая страница